Paddle概述

Paddle概述

本文结合深度学习理论与实践,使用百度飞桨平台实现自然语言处理、计算机视觉及个性化推荐等领域的经典应用。

实践部分使用飞桨深度学习开源框架,适配最新的2.0版本,默认使用动态图编程范式。

 

 

 图1:零基础实践深度学习

内容特色

特色一:理论和代码结合、实践与平台结合,帮助快速掌握深度学习基本功。

目前在市面上,关于人工智能和深度学习的图书和课程已经汗牛充栋,但大多偏重理论,对于AI实践应用的介绍涉猎较少。需要一本理论和代码结合、实践与平台结合的课程,因为多数开发者更习惯通过实践代码来理解模型背后的原理。本文以Jupyter Notebook的方式呈现,源代码可在线运行。

 

 

 图2:理论知识讲解和可运行代码演示一体化

特色二:工业实践案例和作业结合,快速具备深度学习应用的能力。

 

 图3:丰富的比赛和作业题

特色三:深度学习全流程工具支撑。

在人工智能应用飞速落地的今天,如何实现快速建模,如何提升模型的训练和部署效率,已经成为工业界普遍关注的课题。因此本文在介绍深度学习的各种“生存技巧”之后,配备了飞桨“最先进武器”。高超生存技巧,配以先进的武器,相信可以更加自信的驾驭这场轰轰烈烈的AI浪潮,并大放异彩。

 

 

 图4:飞桨全景图

 

posted @   吴建明wujianming  阅读(535)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示