Paddle概述
Paddle概述
本文结合深度学习理论与实践,使用百度飞桨平台实现自然语言处理、计算机视觉及个性化推荐等领域的经典应用。
实践部分使用飞桨深度学习开源框架,适配最新的2.0版本,默认使用动态图编程范式。
图1:零基础实践深度学习
内容特色
特色一:理论和代码结合、实践与平台结合,帮助快速掌握深度学习基本功。
目前在市面上,关于人工智能和深度学习的图书和课程已经汗牛充栋,但大多偏重理论,对于AI实践应用的介绍涉猎较少。需要一本理论和代码结合、实践与平台结合的课程,因为多数开发者更习惯通过实践代码来理解模型背后的原理。本文以Jupyter Notebook的方式呈现,源代码可在线运行。
图2:理论知识讲解和可运行代码演示一体化
特色二:工业实践案例和作业结合,快速具备深度学习应用的能力。
图3:丰富的比赛和作业题
特色三:深度学习全流程工具支撑。
在人工智能应用飞速落地的今天,如何实现快速建模,如何提升模型的训练和部署效率,已经成为工业界普遍关注的课题。因此本文在介绍深度学习的各种“生存技巧”之后,配备了飞桨“最先进武器”。高超生存技巧,配以先进的武器,相信可以更加自信的驾驭这场轰轰烈烈的AI浪潮,并大放异彩。
图4:飞桨全景图
人工智能芯片与自动驾驶