MindSpore数据集mindspore::dataset
MindSpore数据集mindspore::dataset
ResizeBilinear
#include <image_process.h>
通过双线性算法调整图像大小,当前仅支持的数据类型为uint8,当前支持的通道为3和1。
- 参数
- src: 输入的图片数据。
- dst: 输出的图片数据。
- dst_w: 输出图片数据的宽度。
- dst_h: 输出图片数据的高度。
- 返回值
执行成功返回true,否则不满足条件返回false。
InitFromPixel
#include <image_process.h>
从像素初始化LiteMat,提供数据为RGB或者BGR格式,不用进行格式转换,当前支持的转换是RGB_TO_BGR、RGBA_To_RGB、RGBA_To_BGR、NV21_To_BGR和NV12_To_BGR。
- 参数
- data: 输入的数据。
- pixel_type: 像素点的类型。
- data_type: 数据的类型。
- w: 输出数据的宽度。
- h: 输出数据的高度。
- mat: 用于存储图像数据。
- 返回值
初始化成功返回true,否则返回false。
ConvertTo
#include <image_process.h>
转换数据类型,当前支持的转换是将uint8转换为float。
- 参数
- src: 输入的图片数据。
- dst: 输出图像数据。
- scale: 对像素做尺度(默认值为1.0)。
- 返回值
转换数据类型成功返回true,否则返回false。
Crop
#include <image_process.h>
裁剪图像,通道支持为3和1。
- 参数
- src: 输入的图片数据。
- dst: 输出图像数据。
- x: 屏幕截图起点的x坐标值。
- y: 屏幕截图起点的y坐标值。
- w: 截图的宽度。
- h: 截图的高度。
- 返回值
裁剪图像成功返回true,否则返回false。
SubStractMeanNormalize
#include <image_process.h>
归一化图像,当前支持的数据类型为float。
- 参数
- src: 输入的图片数据。
- dst: 输出图像数据。
- mean: 数据集的均值。
- std: 数据集的方差。
- 返回值
归一化成功返回true,否则返回false。
Pad
#include <image_process.h>
填充图像,通道支持为3和1。
- 参数
- src: 输入的图片数据。
- dst: 输出图像数据。
- top: 图片顶部长度。
- bottom: 图片底部长度。
- left: 图片左边长度。
- right: 图片右边长度。
- pad_type: padding的类型。
- fill_b_or_gray: R或者GRAY。
- fill_g: G。
- fill_r: R。
- 返回值
填充图像成功返回true,否则返回false。
ExtractChannel
#include <image_process.h>
按索引提取图像通道。
- 参数
- src: 输入的图片数据。
- col: 通道的序号。
- 返回值
提取图像通道成功返回true,否则返回false。
Split
#include <image_process.h>
将图像通道拆分为单通道。
- 参数
- src: 输入的图片数据。
- mv: 单个通道数据。
- 返回值
图像通道拆分成功返回true,否则返回false。
Merge
#include <image_process.h>
用几个单通道阵列创建一个多通道图像。
- 参数
- mv: 单个通道数据。
- dst: 输出图像数据。
- 返回值
创建多通道图像成功返回true,否则返回false。
Affine
#include <image_process.h>
对1通道图像应用仿射变换。
- 参数
- src: 输入图片数据。
- out_img: 输出图片数据。
- M[6]: 仿射变换矩阵。
- dsize: 输出图像的大小。
- borderValue: 采图之后用于填充的像素值。
#include <image_process.h>
对3通道图像应用仿射变换。
- 参数
- src: 输入图片数据。
- out_img: 输出图片数据。
- M[6]: 仿射变换矩阵。
- dsize: 输出图像的大小。
- borderValue: 采图之后用于填充的像素值。
GetDefaultBoxes
#include <image_process.h>
获取Faster R-CNN,SSD,YOLO等的默认框。
- 参数
- config: BoxesConfig结构体对象。
- 返回值
返回默认框。
ConvertBoxes
#include <image_process.h>
将预测框转换为(y,x,h,w)的实际框。
- 参数
- boxes: 实际框的大小。
- default_boxes: 默认框。
- config: BoxesConfig结构体对象。
ApplyNms
#include <image_process.h>
对实际框的非极大值抑制。
- 参数
- all_boxes: 所有输入的框。
- all_scores: 通过网络执行后所有框的得分。
- thres: IOU的预值。
- max_boxes: 输出框的最大值。
- 返回值
返回框的id。
LiteMat
#include <lite_mat.h>
LiteMat是一个处理图像的类。
构造函数和析构函数
LiteMat
LiteMat(int width, LDataType data_type = LDataType::UINT8)
LiteMat(int width, int height, LDataType data_type = LDataType::UINT8)
LiteMat(int width, int height, int channel, LDataType data_type = LDataType::UINT8)
MindSpore中dataset模块下LiteMat的构造方法,使用参数的默认值。
~LiteMat
MindSpore dataset LiteMat的析构函数。
公有成员函数
Init
void Init(int width, int height, LDataType data_type = LDataType::UINT8)
void Init(int width, int height, int channel, LDataType data_type = LDataType::UINT8)
该函数用于初始化图像的通道,宽度和高度,参数不同。
IsEmpty
确定对象是否为空的函数。
- 返回值
返回true或者false。
Release
释放内存的函数。
公有属性
data_ptr_
pointer类型,表示存放图像数据的地址。
elem_size_
int类型,表示元素的字节数。
width_
int类型,表示图像的宽度。
height_
int类型,表示图像的高度。
channel_
int类型,表示图像的通道数。
c_step_
int类型,表示经过对齐后的图像宽高之积。
dims_
int类型,表示图像的维数。
size_
size_t类型,表示图像占用内存的大小。
data_type_
LDataType类型,表示图像的数据类型。
ref_count_
pointer类型,表示引用计数器的地址。
Subtract
#include <lite_mat.h>
计算每个元素的两个图像之间的差异。
- 参数
- src_a: 输入的图像a的数据。
- src_b: 输入的图像b的数据。
- dst: 输出图像的数据。
- 返回值
满足条件的计算返回true,否则返回false。
Divide
#include <lite_mat.h>
计算每个元素在两个图像之间的划分。
- 参数
- src_a: 输入的图像a的数据。
- src_b: 输入的图像b的数据。
- dst: 输出图像的数据。
- 返回值
满足条件的计算返回true,否则返回false。
Multiply
#include <lite_mat.h>
计算每个元素在两个图像之间的相乘值。
- 参数
- src_a: 输入的图像a的数据。
- src_b: 输入的图像b的数据。
- dst: 输出图像的数据。
- 返回值
满足条件的计算返回true,否则返回false。