MindSpore Lite整体架构介绍

MindSpore Lite整体架构介绍

MindSpore Lite框架的总体架构如下所示:

 

  • 前端(Frontend): 负责模型生成,用户可以通过模型构建接口构建模型,将第三方模型和MindSpore训练的模型转换为MindSpore Lite模型,其中第三方模型包括TensorFlow Lite、Caffe 1.0和ONNX模型。
  • IR 负责MindSpore的Tensor定义、算子定义和图定义。
  • Backend 基于IR进行图优化,包括GHLO、GLLO和量化三部分。其中,GHLO负责和硬件无关的优化,如算子融合、常量折叠等;GLLO负责与硬件相关的优化;量化Quantizer支持权重量化、激活值量化等训练后量化手段。
  • Runtime 智能终端的推理运行时,其中session负责会话管理,提供对外接口;线程池和并行原语负责图执行使用的线程池管理,内存分配负责图执行中各个算子的内存复用,算子库提供CPU、GPU和NPU算子。
  • Micro IoT设备的运行时,包括模型生成.c文件、线程池、内存复用和算子库。

其中,Runtime和Micro共享底层的算子库、内存分配、线程池、并行原语等基础设施层。

 

posted @   吴建明wujianming  阅读(295)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示