MinkowskiEngine实用函数和类
MinkowskiEngine实用函数和类
sparse_quantize
MinkowskiEngine.utils.sparse_quantize
(coords, feats=None, labels=None, ignore_label=- 100, return_index=False, return_inverse=False, quantization_size=None)
给定坐标和特征(optional的标签),函数将生成量化(体素化)坐标。
Args:
coords(numpy.ndarray或torch.Tensor): N×D矩阵大小 ,其中 N 是点数 ,D是维数空间。
feats(numpy.ndarray或torch.Tensor,optional):大小矩阵N×DF ,其中 N 是点数, DF是特征的尺寸。必须与coords具有相同的容器(即,如果coords是torch.Tensor,则feats 也必须是torch.Tensor)。
labels(numpy.ndarray或torch.IntTensor,optional):与eah坐标关联的整数标签。必须与coords具有相同的容器(即,如果coords是torch.Tensor,则 标签也必须是torch.Tensor)。对于将一组点映射到一个标签的分类,请勿输入标签。
ignore_label(int,optional):IGNORE LABEL的int值。 torch.nn.CrossEntropyLoss(ignore_index=ignore_label)
return_index(bool,optional):如果需要量化坐标的索引,则设置True。默认为False。
return_inverse(bool,optional):如果希望索引可以恢复离散化的原始坐标,则将其设置为True。默认为False。当return_reverse为True时,return_index必须为True。
例:
>>> unique_map, inverse_map = sparse_quantize(discrete_coords, return_index=True, return_inverse=True)
>>> unique_coords = discrete_coords[unique_map]
>>> print(unique_coords[inverse_map] == discrete_coords) # True
quantization_size(float,list或 numpy.ndarray,optional):网格单元的超矩形各边的长度。
例:
>>> # Segmentation
>>> criterion = torch.nn.CrossEntropyLoss(ignore_index=-100)
>>> coords, feats, labels = MinkowskiEngine.utils.sparse_quantize(
>>> coords, feats, labels, ignore_label=-100, quantization_size=0.1)
>>> output = net(MinkowskiEngine.SparseTensor(feats, coords))
>>> loss = criterion(output.F, labels.long())
>>>
>>> # Classification
>>> criterion = torch.nn.CrossEntropyLoss(ignore_index=-100)
>>> coords, feats = MinkowskiEngine.utils.sparse_quantize(coords, feats)
>>> output = net(MinkowskiEngine.SparseTensor(feats, coords))
>>> loss = criterion(output.F, labels.long())
batched_coordinates
MinkowskiEngine.utils.batched_coordinates(coords)
根据一系列坐标,创建一个ME.SparseTensor坐标
给定numpy或pytorch张量坐标的列表,返回适合ME.SparseTensor的批处理坐标。
Args:
coords(torch.Tensor或numpy.ndarray的序列):坐标列表。
返回值:
coords(torch.IntTensor):批处理的坐标。
警告
从v0.4开始,批次索引将在所有坐标之前。
sparse_collate
MinkowskiEngine.utils.sparse_collate(coords, feats, labels=None)
为稀疏张量文档创建输入参数。
将一组坐标和特征要素转换为批处理坐标和批处理要素。
Args:
coords(一组torch.Tensor或numpy.ndarray):一组坐标。
feats(一组torch.Tensor或numpy.ndarray):一组功能。
labels(一组torch.Tensor或numpy.ndarray):与输入关联的一组标签。
batch_sparse_collate
MinkowskiEngine.utils.batch_sparse_collate(data)
可以与torch.utils.data.DataLoader结合使用的wrapper包装器函数,为稀疏张量生成输入。
请参阅训练示例以了解用法。
Args:
data:(coordinates, features, labels)元组的列表。
稀疏整理
类MinkowskiEngine.utils.SparseCollation(limit_numpoints = -1)
为coords, feats, labels生成集成功能。
请参阅训练示例以了解用法。
Args:
limit_numpoints(int):如果为正整数,则限制批量大小,以使输入坐标的数量低于limit_numpoints。如果为0或False,则连接所有点。默认为-1。
例:
>>> data_loader = torch.utils.data.DataLoader(
>>> dataset,
>>> ...,
>>> collate_fn=SparseCollation())
>>> for d in iter(data_loader):
>>> print(d)
__init__(limit_numpoints = -1)
初始化self. See help(type(self))有关准确的签名。
get_coords_map
MinkowskiEngine.utils.get_coords_map(x,y)
获取稀疏张量1和稀疏张量2之间的映射。
Args:
x(MinkowskiEngine.SparseTensor):x.tensor_stride <= y.tensor_stride的稀疏张量 。
y(MinkowskiEngine.SparseTensor):x.tensor_stride <= y.tensor_stride的稀疏张量 。
返回值:
x_indices(torch.LongTensor):x的索引与返回的y索引相对应。
x_indices(torch.LongTensor):y的索引,它对应于返回的x的索引。
例:
.. code-block:: python
sp_tensor = ME.SparseTensor(features, coords=coordinates)
out_sp_tensor = stride_2_conv(sp_tensor)
ins, outs = get_coords_map(sp_tensor, out_sp_tensor)
for i, o in zip(ins, outs):
print(f"{i} -> {o}")
cat
MinkowskiEngine.cat(* sparse_tensors)
级联稀疏张量
连接稀疏张量特征。所有稀疏张量必须具有相同的 coords_key(相同的坐标)。要连接具有不同稀疏性模式的稀疏张量,请使用SparseTensor二进制运算或 MinkowskiEngine.MinkowskiUnion。
例:
>>> import MinkowskiEngine as ME
>>> sin = ME.SparseTensor(feats, coords)
>>> sin2 = ME.SparseTensor(feats2, coords_key=sin.coords_key, coords_man=sin.coords_man)
>>> sout = UNet(sin) # Returns an output sparse tensor on the same coordinates
>>> sout2 = ME.cat(sin, sin2, sout) # Can concatenate multiple sparse tensors