MinkowskiEngine实用函数和类

MinkowskiEngine实用函数和类

sparse_quantize

MinkowskiEngine.utils.sparse_quantize(coords, feats=None, labels=None, ignore_label=- 100, return_index=False, return_inverse=False, quantization_size=None)

给定坐标和特征(optional的标签),函数将生成量化(体素化)坐标。

Args

coordsnumpy.ndarraytorch.Tensor): N×D矩阵大小 ,其中 N 是点数 ,D是维数空间。

featsnumpy.ndarraytorch.Tensor,optional):大小矩阵N×DF ,其中 N 是点数, DF是特征的尺寸。必须与coords具有相同的容器(即,如果coords是torch.Tensor,则feats 也必须是torch.Tensor)。

labelsnumpy.ndarraytorch.IntTensor,optional):与eah坐标关联的整数标签。必须与coords具有相同的容器(即,如果coords是torch.Tensor,则 标签也必须是torch.Tensor)。对于将一组点映射到一个标签的分类,请勿输入标签。

ignore_labelint,optional):IGNORE LABEL的int值。 torch.nn.CrossEntropyLoss(ignore_index=ignore_label)

return_indexbool,optional):如果需要量化坐标的索引,则设置True。默认为False。

return_inversebool,optional):如果希望索引可以恢复离散化的原始坐标,则将其设置为True。默认为False。当return_reverse为True时,return_index必须为True。

例:

>>> unique_map, inverse_map = sparse_quantize(discrete_coords, return_index=True, return_inverse=True)

>>> unique_coords = discrete_coords[unique_map]

>>> print(unique_coords[inverse_map] == discrete_coords)  # True

quantization_sizefloatlist或 numpy.ndarray,optional):网格单元的超矩形各边的长度。

例:

>>> # Segmentation

>>> criterion = torch.nn.CrossEntropyLoss(ignore_index=-100)

>>> coords, feats, labels = MinkowskiEngine.utils.sparse_quantize(

>>>     coords, feats, labels, ignore_label=-100, quantization_size=0.1)

>>> output = net(MinkowskiEngine.SparseTensor(feats, coords))

>>> loss = criterion(output.F, labels.long())

>>> 

>>> # Classification

>>> criterion = torch.nn.CrossEntropyLoss(ignore_index=-100)

>>> coords, feats = MinkowskiEngine.utils.sparse_quantize(coords, feats)

>>> output = net(MinkowskiEngine.SparseTensor(feats, coords))

>>> loss = criterion(output.F, labels.long())

batched_coordinates

MinkowskiEngine.utils.batched_coordinatescoords

根据一系列坐标,创建一个ME.SparseTensor坐标

给定numpy或pytorch张量坐标的列表,返回适合ME.SparseTensor的批处理坐标。

Args

coordstorch.Tensornumpy.ndarray的序列):坐标列表。

返回值:

coordstorch.IntTensor):批处理的坐标。

警告

从v0.4开始,批次索引将在所有坐标之前。

sparse_collat​​e

MinkowskiEngine.utils.sparse_collatecoords, feats, labels=None

为稀疏张量文档创建输入参数。

将一组坐标和特征要素转换为批处理坐标和批处理要素。

Args

coords(一组torch.Tensornumpy.ndarray):一组坐标。

feats(一组torch.Tensornumpy.ndarray):一组功能。

labels(一组torch.Tensornumpy.ndarray):与输入关联的一组标签。

batch_sparse_collat​​e

MinkowskiEngine.utils.batch_sparse_collatedata

可以与torch.utils.data.DataLoader结合使用的wrapper包装器函数,为稀疏张量生成输入。

请参阅训练示例以了解用法。

Args

data:(coordinates, features, labels)元组的列表。

稀疏整理

MinkowskiEngine.utils.SparseCollationlimit_numpoints = -1

为coords, feats, labels生成集成功能。

请参阅训练示例以了解用法。

Args

limit_numpoints(int):如果为正整数,则限制批量大小,以使输入坐标的数量低于limit_numpoints。如果为0或False,则连接所有点。默认为-1。

例:

>>> data_loader = torch.utils.data.DataLoader(

>>>     dataset,

>>>     ...,

>>>     collate_fn=SparseCollation())

>>> for d in iter(data_loader):

>>>     print(d)

__init__limit_numpoints = -1

初始化self. See help(type(self))有关准确的签名。

get_coords_map

MinkowskiEngine.utils.get_coords_mapxy

获取稀疏张量1和稀疏张量2之间的映射。

Args

xMinkowskiEngine.SparseTensor):x.tensor_stride <= y.tensor_stride的稀疏张量 。

yMinkowskiEngine.SparseTensor):x.tensor_stride <= y.tensor_stride的稀疏张量 。

返回值:

x_indicestorch.LongTensor):x的索引与返回的y索引相对应。

x_indicestorch.LongTensor):y的索引,它对应于返回的x的索引。

例:

.. code-block:: python

 

   sp_tensor = ME.SparseTensor(features, coords=coordinates)

   out_sp_tensor = stride_2_conv(sp_tensor)

 

   ins, outs = get_coords_map(sp_tensor, out_sp_tensor)

   for i, o in zip(ins, outs):

      print(f"{i} -> {o}")

cat

MinkowskiEngine.cat* sparse_tensors

级联稀疏张量

连接稀疏张量特征。所有稀疏张量必须具有相同的 coords_key(相同的坐标)。要连接具有不同稀疏性模式的稀疏张量,请使用SparseTensor二进制运算或 MinkowskiEngine.MinkowskiUnion

例:

>>> import MinkowskiEngine as ME

>>> sin = ME.SparseTensor(feats, coords)

>>> sin2 = ME.SparseTensor(feats2, coords_key=sin.coords_key, coords_man=sin.coords_man)

>>> sout = UNet(sin)  # Returns an output sparse tensor on the same coordinates

>>> sout2 = ME.cat(sin, sin2, sout)  # Can concatenate multiple sparse tensors

 

posted @ 2021-01-04 06:40  吴建明wujianming  阅读(620)  评论(0编辑  收藏  举报