CPU的自动调度矩阵乘法
CPU的自动调度矩阵乘法
这是一个有关如何对CPU使用自动调度程序的文档。
与依靠手动模板定义搜索空间的基于模板的autotvm不同,自动调度程序不需要任何模板。用户只需要编写计算声明,而无需任何调度命令或模板。自动调度程序可以自动生成较大的搜索空间,并在该空间中找到良好的调度。
本文以矩阵乘法为例。
注意,本文无法在Windows或最新版本的macOS上运行。要使其运行,需要将本文的内容包装在一个if __name__ == "__main__":块中。
import os
import numpy as np
import tvm
from tvm import te, auto_scheduler
定义计算
首先,定义带有偏差加法的矩阵的计算。该函数应返回输入/输出张量的列表。通过这些张量,自动调度器可以获取整个计算图。
@auto_scheduler.register_workload
def matmul_add(N, L, M, dtype):
A = te.placeholder((N, L), name="A", dtype=dtype)
B = te.placeholder((L, M), name="B", dtype=dtype)
C = te.placeholder((N, M), name="C", dtype=dtype)
k = te.reduce_axis((0, L), name="k")
matmul = te.compute(
(N, M),
lambda i, j: te.sum(A[i, k] * B[k, j], axis=k),
name="matmul",
attrs={"layout_free_placeholders": [B]}, # enable automatic layout transform for tensor B
)
out = te.compute((N, M), lambda i, j: matmul[i, j] + C[i, j], name="out")
return [A, B, C, out]
创建搜索任务
然后,创建一个搜索任务,其中N = L = M = 1024且dtype =“ float32”。如果计算机支持avx指令,可以
- 将下面的“ llvm”替换为“ llvm -mcpu = core-avx2”以启用AVX2
- 将下面的“ llvm”替换为“ llvm -mcpu = skylake-avx512”以启用AVX-512
target = tvm.target.Target("llvm")
N = L = M = 1024
task = tvm.auto_scheduler.SearchTask(func=matmul_add, args=(N, L, M, "float32"), target=target)
# Inspect the computational graph
print("Computational DAG:")
print(task.compute_dag)
出:
Computational DAG:
A = PLACEHOLDER [1024, 1024]
B = PLACEHOLDER [1024, 1024]
matmul(i, j) += (A[i, k]*B[k, j])
C = PLACEHOLDER [1024, 1024]
out(i, j) = (matmul[i, j] + C[i, j])
接下来,为自动调度程序设置参数。
- num_measure_trials是在搜索过程中可以使用的测量试验的数量。为了快速演示,在本文中仅进行10次试用。实际上,1000是搜索收敛的一个很好的值。可以根据自己的时间预算进行更多试验。
- 此外,还用RecordToFile将测量记录转储到文件matmul.json中。测量记录可用于最好地查询历史记录,恢复搜索以及以后进行更多分析。
- 查看更多参数auto_scheduler.TuningOptions
log_file = "matmul.json"
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=10,
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
verbose=2,
)
运行搜索
现在准备好所有输入。开始搜索,让自动调度程序发挥作用。经过一些测量试验后,可以从日志文件中加载最佳调度并应用它。
# Run auto-tuning (search)
task.tune(tune_option)
# Apply the best schedule
sch, args = task.apply_best(log_file)
出:
*T*T*T*T*T*T*T*T*T*T
可以降低调度,以便在自动调度后查看IR。自动调度程序正确执行优化,包括多层平铺,布局转换,并行化,矢量化,展开和运算符融合。
print("Lowered TIR:")
print(tvm.lower(sch, args, simple_mode=True))
输出:
Lowered TIR:
primfn(A_1: handle, B_1: handle, C_1: handle, out_1: handle) -> ()
attr = {"global_symbol": "main", "tir.noalias": True}
buffers = {out: Buffer(out_2: Pointer(float32), float32, [1024, 1024], []),
C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], []),
A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], [])}
buffer_map = {A_1: A, B_1: B, C_1: C, out_1: out} {
attr [auto_scheduler_layout_transform: Pointer(float32)] "storage_scope" = "global";
allocate(auto_scheduler_layout_transform, float32, [1048576]) {
for (ax0.ax1.fused.ax2.fused.ax3.fused.ax4.fused.ax5.fused.ax6.fused: int32, 0, 131072) "parallel" {
for (ax7: int32, 0, 8) {
auto_scheduler_layout_transform[((ax0.ax1.fused.ax2.fused.ax3.fused.ax4.fused.ax5.fused.ax6.fused*8) + ax7)] = (float32*)B_2[(((floormod(ax0.ax1.fused.ax2.fused.ax3.fused.ax4.fused.ax5.fused.ax6.fused, 1024)*1024) + (floordiv(ax0.ax1.fused.ax2.fused.ax3.fused.ax4.fused.ax5.fused.ax6.fused, 1024)*8)) + ax7)]
}
}
for (i.outer.outer.j.outer.outer.fused: int32, 0, 16384) "parallel" {
attr [matmul: Pointer(float32)] "storage_scope" = "global";
allocate(matmul, float32x8, [4]);
for (i.outer.inner: int32, 0, 2) {
matmul[ramp(0, 1, 8)] = broadcast(0f32, 8)
matmul[ramp(8, 1, 8)] = broadcast(0f32, 8)
matmul[ramp(16, 1, 8)] = broadcast(0f32, 8)
matmul[ramp(24, 1, 8)] = broadcast(0f32, 8)
for (k.outer: int32, 0, 256) {
for (k.inner: int32, 0, 4) {
matmul[ramp(0, 1, 8)] = ((float32x8*)matmul[ramp(0, 1, 8)] + (broadcast((float32*)A_2[((((floordiv(i.outer.outer.j.outer.outer.fused, 128)*8192) + (i.outer.inner*4096)) + (k.outer*4)) + k.inner)], 8)*(float32x8*)auto_scheduler_layout_transform[ramp((((floormod(i.outer.outer.j.outer.outer.fused, 128)*8192) + (k.outer*32)) + (k.inner*8)), 1, 8)]))
matmul[ramp(8, 1, 8)] = ((float32x8*)matmul[ramp(8, 1, 8)] + (broadcast((float32*)A_2[(((((floordiv(i.outer.outer.j.outer.outer.fused, 128)*8192) + (i.outer.inner*4096)) + (k.outer*4)) + k.inner) + 1024)], 8)*(float32x8*)auto_scheduler_layout_transform[ramp((((floormod(i.outer.outer.j.outer.outer.fused, 128)*8192) + (k.outer*32)) + (k.inner*8)), 1, 8)]))
matmul[ramp(16, 1, 8)] = ((float32x8*)matmul[ramp(16, 1, 8)] + (broadcast((float32*)A_2[(((((floordiv(i.outer.outer.j.outer.outer.fused, 128)*8192) + (i.outer.inner*4096)) + (k.outer*4)) + k.inner) + 2048)], 8)*(float32x8*)auto_scheduler_layout_transform[ramp((((floormod(i.outer.outer.j.outer.outer.fused, 128)*8192) + (k.outer*32)) + (k.inner*8)), 1, 8)]))
matmul[ramp(24, 1, 8)] = ((float32x8*)matmul[ramp(24, 1, 8)] + (broadcast((float32*)A_2[(((((floordiv(i.outer.outer.j.outer.outer.fused, 128)*8192) + (i.outer.inner*4096)) + (k.outer*4)) + k.inner) + 3072)], 8)*(float32x8*)auto_scheduler_layout_transform[ramp((((floormod(i.outer.outer.j.outer.outer.fused, 128)*8192) + (k.outer*32)) + (k.inner*8)), 1, 8)]))
}
}
for (i.inner: int32, 0, 4) {
out_2[ramp(((((floordiv(i.outer.outer.j.outer.outer.fused, 128)*8192) + (i.outer.inner*4096)) + (i.inner*1024)) + (floormod(i.outer.outer.j.outer.outer.fused, 128)*8)), 1, 8)] = ((float32x8*)matmul[ramp((i.inner*8), 1, 8)] + (float32x8*)C_2[ramp(((((floordiv(i.outer.outer.j.outer.outer.fused, 128)*8192) + (i.outer.inner*4096)) + (i.inner*1024)) + (floormod(i.outer.outer.j.outer.outer.fused, 128)*8)), 1, 8)])
}
}
}
}
}
检查正确性并评估性能
构建二进制文件并检查其正确性和性能。
func = tvm.build(sch, args, target)
a_np = np.random.uniform(size=(N, L)).astype(np.float32)
b_np = np.random.uniform(size=(L, M)).astype(np.float32)
c_np = np.random.uniform(size=(N, M)).astype(np.float32)
out_np = a_np.dot(b_np) + c_np
ctx = tvm.cpu()
a_tvm = tvm.nd.array(a_np, ctx=ctx)
b_tvm = tvm.nd.array(b_np, ctx=ctx)
c_tvm = tvm.nd.array(c_np, ctx=ctx)
out_tvm = tvm.nd.empty(out_np.shape, ctx=ctx)
func(a_tvm, b_tvm, c_tvm, out_tvm)
# Check results
np.testing.assert_allclose(out_np, out_tvm.asnumpy(), rtol=1e-3)
# Evaluate execution time.
evaluator = func.time_evaluator(func.entry_name, ctx, min_repeat_ms=500)
print(
"Execution time of this operator: %.3f ms"
% (np.median(evaluator(a_tvm, b_tvm, c_tvm, out_tvm).results) * 1000)
)
出:
Execution time of this operator: 22.426 ms
使用记录文件
搜索期间,所有测量记录都将转储到记录文件“ matmul.json”中。测量记录可用于重新应用搜索结果,继续搜索以及执行其它分析。
这是一个示例,其中从文件加载最佳调度,并打印等效的python调度API。这可用于调试和学习自动调度程序的行为。
print("Equivalent python schedule:")
print(task.print_best(log_file))
出:
Equivalent python schedule:
matmul_i, matmul_j, matmul_k = tuple(matmul.op.axis) + tuple(matmul.op.reduce_axis)
out_i, out_j = tuple(out.op.axis) + tuple(out.op.reduce_axis)
matmul_i_o_i, matmul_i_i = s[matmul].split(matmul_i, factor=4)
matmul_i_o_o_i, matmul_i_o_i = s[matmul].split(matmul_i_o_i, factor=1)
matmul_i_o_o_o, matmul_i_o_o_i = s[matmul].split(matmul_i_o_o_i, factor=2)
matmul_j_o_i, matmul_j_i = s[matmul].split(matmul_j, factor=8)
matmul_j_o_o_i, matmul_j_o_i = s[matmul].split(matmul_j_o_i, factor=1)
matmul_j_o_o_o, matmul_j_o_o_i = s[matmul].split(matmul_j_o_o_i, factor=1)
matmul_k_o, matmul_k_i = s[matmul].split(matmul_k, factor=4)
s[matmul].reorder(matmul_i_o_o_o, matmul_j_o_o_o, matmul_i_o_o_i, matmul_j_o_o_i, matmul_k_o, matmul_i_o_i, matmul_j_o_i, matmul_k_i, matmul_i_i, matmul_j_i)
out_i_o_i, out_i_i = s[out].split(out_i, factor=4)
out_i_o_o, out_i_o_i = s[out].split(out_i_o_i, factor=2)
out_j_o_i, out_j_i = s[out].split(out_j, factor=8)
out_j_o_o, out_j_o_i = s[out].split(out_j_o_i, factor=1)
s[out].reorder(out_i_o_o, out_j_o_o, out_i_o_i, out_j_o_i, out_i_i, out_j_i)
s[matmul].compute_at(s[out], out_j_o_i)
out_i_o_o_j_o_o_fused = s[out].fuse(out_i_o_o, out_j_o_o)
s[out].parallel(out_i_o_o_j_o_o_fused)
s[matmul].pragma(matmul_i_o_o_o, "auto_unroll_max_step", 8)
s[matmul].pragma(matmul_i_o_o_o, "unroll_explicit", True)
s[matmul].vectorize(matmul_j_i)
s[out].vectorize(out_j_i)
一个更复杂的示例是继续搜索。在这种情况下,需要自己创建搜索策略和成本模型,并使用日志文件恢复搜索策略和成本模型的状态。在下面的示例中,恢复状态并进行5次以上的试用。
def resume_search(task, log_file_name):
cost_model = auto_scheduler.XGBModel()
cost_model.update_from_file(log_file_name)
search_policy = auto_scheduler.SketchPolicy(
task,
cost_model,
init_search_callbacks=[auto_scheduler.PreloadMeasuredStates(log_file_name)],
)
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=5, measure_callbacks=[auto_scheduler.RecordToFile(log_file_name)]
)
task.tune(tune_option, search_policy=search_policy)
# resume_search(task, log_file)
注意
由于python的多处理和tvm的线程池之间的冲突,因此无法在上面运行此行。运行tvm生成的二进制文件后,python的多处理库将永远挂起。必须确保在调用auot-scheduler的搜索之前,不要运行任何tvm生成的二进制文件。要运行上面的功能,应该注释掉“检查正确性和评估性能”部分中的所有代码。
应该在应用程序中注意这个问题。对于此问题,还有其他解决方法。例如,可以启动新线程/进程(使用内置的python库线程或多线程处理),并在新线程/进程中运行tvm二进制文件。这提供了隔离,并避免了主线程/进程中的冲突。还可以将auto_scheduler.LocalRPCMeasureContext用于自动调度程序,如GPU帮助(自动调度GPU的卷积层)中所示。
脚本的总运行时间:(1分钟50.410秒)
https://tvm.apache.org/docs/tutorials/auto_scheduler/tune_matmul_x86.html#sphx-glr-tutorials-auto-scheduler-tune-matmul-x86-py