使用TensorRT集成推理inference
使用TensorRT集成推理inference
使用TensorRT集成进行推理测试。
使用ResNet50模型对每个GPU进行推理,并对其它模型进行性能比较,最后与其它服务器进行比较测试。
- ResNet-50 Inference performance: Throughput vs Batch size
在每个GPU上使用不同的批处理大小(从1到32)运行带有预训练的ResNet50模型的吞吐量测试。
图1显示了吞吐量(帧/秒)的结果。
结果在gpu和潜伏期(在右纵轴上表示)上是一致的。
Figure 1. Resnet_50 Inference on each GPU. Server with 6 GPU’s
上面的曲线图显示,使用Batchsize为1-8的批处理可以达到7ms的延迟,并且从y轴来看,当Batchsize为4时,在7ms延迟窗口内我们可以得到670个帧/秒。
在运行测试时,我们发现默认情况下推理inference是在设备0上进行的,这意味着当前的TensorRT™ 推理引擎不能与GPU-GPU通信一起工作以最大限度地利用服务器中可用的GPU。如果目标是在多个GPU中运行同一个图形来提高吞吐量,Nvidia建议现在使用原生TensorFlow。
另一方面,TensorRT推理服务器(TRTIS)支持多个GPU,但不支持运行分布在多个GPU上的单个推理。TRTIS可以在多个GPU上运行多个模型(和/或同一模型的多个实例)以提高吞吐量。
2.All Models: Images/sec vs batch size vs Neural models
Figure 2. Throughput Inference Performance with Several Neural Models and Batch Sizes
使用不同的神经模型在不同的Batchsize中进行推理测试。
以Batchsize大小1、2、4、8、26和32显示运行推理inference的吞吐量和延迟。ResNet50以最低的延迟产生最高的吞吐量(图像/秒)。
Figure 3. Latency Inference Performance with Several Neural Models and Batch Sizes
3 All Models - R7425-T4-16GB versus Other servers and NVIDIA GPU
Figure 4. Throughput Inference Performance on R7425-T4-16GB Server versus Other Servers
Figure 5. Latency Inference performance on R7425-T4-16GB Server versus other servers
使用几种模型在服务器R740-P4和R7245-P4上进行了推理测试,并将它们的结果与R7425-T4-16GB的结果进行了比较。服务器R7425-T4-16GB的性能比ResNet50型号上的其它服务器快1.8倍,延迟只有一半。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)