矩阵分解

矩阵分解

Matrix Factorization

矩阵因子分解[Koren等人,2009]是推荐系统文献中一个成熟的算法。矩阵分解模型的第一个版本是由simonfunk在一篇著名的博客文章中提出的,在文章中描述了将交互矩阵分解的思想。后来由于2006年举行的Netflix竞赛而广为人知。当时,流媒体和视频租赁公司Netflix宣布举办一场竞赛,以提高推荐系统的性能。在Netflix基线(即Cinematch)基础上提高10%的最佳团队将获得100万美元奖金。正因如此,本次大赛引起了推荐系统研究领域的广泛关注。随后,BellKor的实用主义混沌团队赢得了大奖,该团队由BellKor、语用理论和BigChaos组成(现在不需要担心这些算法)。虽然最终得分是一个整体解决方案(即,许多算法的组合)的结果,矩阵分解算法在最终的混合中起着关键作用。技术报告Netflix Grand Prize solution【Toscher等人,2009年】对采用的模型进行了详细介绍。在本文中,将深入研究矩阵分解模型及其实现的细节。

1. The Matrix Factorization Model

矩阵分解是一类协同过滤模型。具体而言,该模型将用户-项目交互矩阵(如评分矩阵)分解为两个低秩矩阵的乘积,捕捉用户-项目交互的低秩结构。

Fig. 1  Illustration of matrix factorization model

在本节的其余部分中,将解释矩阵分解的实现,并在MovieLens数据集上训练模型。

from d2l import mxnet as d2l

from mxnet import autograd, gluon, np, npx

from mxnet.gluon import nn

import mxnet as mx

npx.set_np()

2. Model Implementation

首先,实现了上面描述的矩阵分解模型。用户和项目的潜在因素可以用nn.Embedding。input_dim是items/users and the (output_dim)的数量,(output_dim)是潜在因素的维度(k). 也可以使用nn.Embedding通过将output _dim设置为1来创建items/users偏差。在forward函数中,用户和项目id用于查找嵌入项。

class MF(nn.Block):

    def __init__(self, num_factors, num_users, num_items, **kwargs):

        super(MF, self).__init__(**kwargs)

        self.P = nn.Embedding(input_dim=num_users, output_dim=num_factors)

        self.Q = nn.Embedding(input_dim=num_items, output_dim=num_factors)

        self.user_bias = nn.Embedding(num_users, 1)

        self.item_bias = nn.Embedding(num_items, 1)

    def forward(self, user_id, item_id):

        P_u = self.P(user_id)

        Q_i = self.Q(item_id)

        b_u = self.user_bias(user_id)

        b_i = self.item_bias(item_id)

        outputs = (P_u * Q_i).sum(axis=1) + np.squeeze(b_u) + np.squeeze(b_i)

        return outputs.flatten()

3. Evaluation Measures

然后,实施RMSE(均方根误差)测量,该测量通常用于测量模型预测的评级分数与实际观察的评级(基本真实情况)之间的差异。RMSE定义为:

其中T是由要对其求值的用户和项对组成的集。|T|就是这数据集的大小。可以使用mx公制。

def evaluator(net, test_iter, ctx):

    rmse = mx.metric.RMSE()  # Get the RMSE

    rmse_list = []

    for idx, (users, items, ratings) in enumerate(test_iter):

        u = gluon.utils.split_and_load(users, ctx, even_split=False)

        i = gluon.utils.split_and_load(items, ctx, even_split=False)

        r_ui = gluon.utils.split_and_load(ratings, ctx, even_split=False)

        r_hat = [net(u, i) for u, i in zip(u, i)]

        rmse.update(labels=r_ui, preds=r_hat)

        rmse_list.append(rmse.get()[1])

    return float(np.mean(np.array(rmse_list)))

4. Training and Evaluating the Model

在训练模块中,采用L2级权重loss。权重衰减机制与L2级正规化。

#@save

def train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,

                        ctx_list=d2l.try_all_gpus(), evaluator=None,

                        **kwargs):

    timer = d2l.Timer()

    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 2],

                            legend=['train loss', 'test RMSE'])

    for epoch in range(num_epochs):

        metric, l = d2l.Accumulator(3), 0.

        for i, values in enumerate(train_iter):

            timer.start()

            input_data = []

            values = values if isinstance(values, list) else [values]

            for v in values:

                input_data.append(gluon.utils.split_and_load(v, ctx_list))

            train_feat = input_data[0:-1] if len(values) > 1 else input_data

            train_label = input_data[-1]

            with autograd.record():

                preds = [net(*t) for t in zip(*train_feat)]

                ls = [loss(p, s) for p, s in zip(preds, train_label)]

            [l.backward() for l in ls]

            l += sum([l.asnumpy() for l in ls]).mean() / len(ctx_list)

            trainer.step(values[0].shape[0])

            metric.add(l, values[0].shape[0], values[0].size)

            timer.stop()

        if len(kwargs) > 0:  # it will be used in section AutoRec.

            test_rmse = evaluator(net, test_iter, kwargs['inter_mat'],

                                  ctx_list)

        else:

            test_rmse = evaluator(net, test_iter, ctx_list)

        train_l = l / (i + 1)

        animator.add(epoch + 1, (train_l, test_rmse))

    print('train loss %.3f, test RMSE %.3f'

          % (metric[0] / metric[1], test_rmse))

    print('%.1f examples/sec on %s'

          % (metric[2] * num_epochs / timer.sum(), ctx_list))

最后,让把所有的东西放在一起训练模型。这里,将潜在因子维度设置为30。

ctx = d2l.try_all_gpus()

num_users, num_items, train_iter, test_iter = d2l.split_and_load_ml100k(

    test_ratio=0.1, batch_size=512)

net = MF(30, num_users, num_items)

net.initialize(ctx=ctx, force_reinit=True, init=mx.init.Normal(0.01))

lr, num_epochs, wd, optimizer = 0.002, 20, 1e-5, 'adam'

loss = gluon.loss.L2Loss()

trainer = gluon.Trainer(net.collect_params(), optimizer,

                        {"learning_rate": lr, 'wd': wd})

train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,

                    ctx, evaluator)

train loss 0.067, test RMSE 1.051

70619.5 examples/sec on [gpu(0), gpu(1)]

 下面,使用经过训练的模型来预测用户(ID 20)可能对项目(ID 30)的评分。

scores = net(np.array([20], dtype='int', ctx=d2l.try_gpu()),

             np.array([30], dtype='int', ctx=d2l.try_gpu()))

scores

scores = net(np.array([20], dtype='int', ctx=d2l.try_gpu()),

             np.array([30], dtype='int', ctx=d2l.try_gpu()))

scores

5. Summary

  • The matrix factorization model is widely used in recommender systems. It can be used to predict ratings that a user might give to an item.
  • We can implement and train matrix factorization for recommender systems.

 

 

 

posted @ 2020-07-01 19:20  吴建明wujianming  阅读(781)  评论(0编辑  收藏  举报