NVIDIA TensorRT:可编程推理加速器

NVIDIA TensorRT:可编程推理加速器

一.概述

NVIDIA TensorRT™是一个用于高性能深度学习推理的SDK。它包括一个深度学习推理优化器和运行时间,为深度学习推理应用程序提供低延迟和高吞吐量。

在推理过程中,基于TensorRT的应用程序执行速度比仅限CPU的平台快40倍。使用TensorRT,可以优化在所有主要框架中训练的神经网络模型,以高精度校准较低精度,最后部署到高规模数据中心、嵌入式或汽车产品平台。             

TensorRT建立在NVIDIA的并行编程模型CUDA的基础上,使能够利用CUDA-X中的库、开发工具和技术,为人工智能、自动化机器、高性能计算和图形优化所有深度学习框架的推理。              TensorRT为深度学习推理应用程序(如视频流、语音识别、推荐和自然语言处理)的生产部署提供INT8和FP16优化。减少的精确推理显著减少了应用程序延迟,这是许多实时服务、自动和嵌入式应用程序的要求。             

可以将每个深度学习框架中经过训练的模型导入TensorRT。在应用优化后,TensorRT选择特定于平台的内核,以在数据中心的Tesla gpu、Jetson嵌入式平台和NVIDIA驱动自主驾驶平台上实现性能最大化。             

使用TensorRT,开发人员可以专注于创建新的人工智能应用程序,而不是为推理部署进行性能调整。

 

 

 二.tensorRT开源代码

链接地址:https://github.com/NVIDIA/TensorRT

TensorRT Open Source Software

此存储库包含NVIDIA TensorRT的开源软件(OSS)组件。包括TensorRT插件和解析器(Caffe和ONNX)的源代码,以及演示TensorRT平台的使用和功能的示例应用程序。

Prerequisites

要构建TensorRT OSS组件,请确保满足以下包要求:

System Packages

  • CUDA
  • GNU Make >= v4.1
  • CMake >= v3.13
  • Python
  • PIP >= v19.0
  • Essential libraries and utilities
  • Jetson平台的交叉编译需要安装JetPack的主机组件

Optional Packages

  • Containerized builds
  • Code formatting tools

TensorRT Release

注意:除了TensorRT OSS组件外,还将下载以下源包,不需要在系统上安装。

ONNX-TensorRT v7.0

 三.Availability

TensorRT可从TensorRT产品页免费向NVIDIA开发人员程序的成员提供,以进行开发和部署。最新版本的插件、解析器和示例也可以从TensorRT github存储库中以开源方式获得。开发人员还可以从NGC容器注册中心在TensorRT容器中获取TensorRT。TensorRT包括在:             

NVIDIA Deepstream SDK,用于计算机视觉和智能视频分析(IVA)应用程序中的实时流分析。              

NVIDIA DRIVE用于NVIDIA DRIVE PX2自主驾驶平台的安装。             

NVIDIA Jetpack for Jetson TX1、TX2嵌入式平台。

posted @ 2020-05-28 16:19  吴建明wujianming  阅读(1157)  评论(0编辑  收藏  举报