深度学习模型轻量化(上)
深度学习模型轻量化(上)
移动端模型必须满足模型尺寸小、计算复杂度低、电池耗电量低、下发更新部署灵活等条件。
模型压缩和加速是两个不同的话题,有时候压缩并不一定能带来加速的效果,有时候又是相辅相成的。压缩重点在于减少网络参数量,加速则侧重在降低计算复杂度、提升并行能力等。模型压缩和加速可以从多个角度来优化。总体来看,个人认为主要分为三个层次:
1. 算法层压缩加速。这个维度主要在算法应用层,也是大多数算法工程师的工作范畴。主要包括结构优化(如矩阵分解、分组卷积、小卷积核等)、量化与定点化、模型剪枝、模型蒸馏等。
2. 框架层加速。这个维度主要在算法框架层,比如tf-lite、NCNN、MNN等。主要包括编译优化、缓存优化、稀疏存储和计算、NEON指令应用、算子优化等
3. 硬件层加速。这个维度主要在AI硬件芯片层,目前有GPU、FPGA、ASIC等多种方案,各种TPU、NPU就是ASIC这种方案,通过专门为深度学习进行芯片定制,大大加速模型运行速度。
下面也会分算法层、框架层和硬件层三个方面进行介绍。
2 算法层压缩加速
2.1 结构优化
2.1.1 矩阵分解
举个例子,将M*N的矩阵分解为M*K + K*N,只要让K<<M 且 K << N,就可以大大降低模型体积。比如在ALBERT的embedding层,就做了矩阵分解的优化。如下图所示
其中M为词表长度,也就是vocab_size,典型值为21128。N为隐层大小,典型值为1024,也就是hidden_size。K为我们设置的低维词嵌入空间,可以设置为128。
1. 分解前:矩阵参数量为 (M * N)
2. 分解后:参数量为 (M*K + K*N)
3. 压缩量:(M * N) / (M*K + K*N), 由于M远大于N,故可近似为 N / k,当N=2014,k=128时,可以压缩8倍
2.1.2 权值共享
相对于DNN全连接参数量过大的问题,CNN提出了局部感受野和权值共享的概念。在NLP中同样也有类似应用的场景。比如ALBert中,12层共用同一套参数,包括multi-head self attention和feed-forward,从而使得参数量降低到原来的1/12。这个方案对于模型压缩作用很大,但对于推理加速则收效甚微。因为共享权值并没有带来计算量的减少。
2.1.3 分组卷积
在视觉模型中应用较为广泛,比如shuffleNet,mobileNet等。我们以mobileNet为例。对于常规的M输入通道,N输出通道,dk*dk的kernel size的卷积,需要参数量为 M*N*dk*dk。这是因为每个输入通道,都会抽取N种特征(对应输出通道数),不同的输入通道需要不同的kernel来做抽取,然后叠加起来。故M个输入通道,N个输出通道,就需要M*N个kernel了。
mobileNet对常规卷积做了优化,每个输入通道,仅需要一个kernel做特征提取,这叫做depth wise。如此M个通道可得到M个feature map。但我们想要的是N通道输出,怎么办呢?mobileNet采用一个常规1*1卷积来处理这个连接,从而转化到N个输出通道上。总结下来,mobileNet利用一个dk*dk的depth wise卷积和一个1*1的point wise卷积来实现一个常规卷积。
1. 分组前:参数量 (M*N*dk*dk)
2. 分组后:参数量 (M*dk*dk + M*N*1*1)
3. 压缩量:(M*dk*dk + M*N*1*1) / (M*N*dk*dk),近似为 1/(dk*dk)。dk的常见值为3,也就是3*3卷积,故可缩小约9倍
如下图所示:
2.1.4 分解卷积
1. 使用两个串联小卷积核来代替一个大卷积核。InceptionV2中创造性的提出了两个3x3的卷积核代替一个5x5的卷积核。在效果相同的情况下,参数量仅为原先的 3x3x2 / 5x5 = 18/25
2. 使用两个并联的非对称卷积核来代替一个正常卷积核。InceptionV3中将一个7x7的卷积拆分成了一个1x7和一个7x1, 卷积效果相同的情况下,大大减少了参数量,同时还提高了卷积的多样性。
2.1.5 其他
1. 全局平均池化代替全连接层。这个才是大杀器!AlexNet和VGGNet中,全连接层几乎占据了90%的参数量。inceptionV1创造性的使用全局平均池化来代替最后的全连接层,使得其在网络结构更深的情况下(22层,AlexNet仅8层),参数量只有500万,仅为AlexNet的1/12
2. 1x1卷积核的使用。1x1的卷积核可以说是性价比最高的卷积了,没有之一。它在参数量为1的情况下,同样能够提供线性变换,relu激活,输入输出channel变换等功能。VGGNet创造性的提出了1x1的卷积核
3. 使用小卷积核来代替大卷积核。VGGNet全部使用3x3的小卷积核,来代替AlexNet中11x11和5x5等大卷积核。小卷积核虽然参数量较少,但也会带来特征面积捕获过小的问题。inception net认为越往后的卷积层,应该捕获更多更高阶的抽象特征。因此它在靠后的卷积层中使用的5x5等大面积的卷积核的比率较高,而在前面几层卷积中,更多使用的是1x1和3x3的卷积核。
2.2 量化
2.2.1 伪量化
深度学习模型参数通常是32bit浮点型,我们能否使用16bit,8bit,甚至1bit来存储呢?答案是肯定的。常见的做法是保存模型每一层时,利用低精度来保存每一个网络参数,同时保存拉伸比例scale和零值对应的浮点数zero_point。推理阶段,利用如下公式来网络参数还原为32bit浮点:
这个过程被称为伪量化。
伪量化之所以得名,是因为存储时使用了低精度进行量化,但推理时会还原为正常高精度。为什么推理时不仍然使用低精度呢?这是因为一方面框架层有些算子只支持浮点运算,需要专门实现算子定点化才行。另一方面,高精度推理准确率相对高一些。伪量化可以实现模型压缩,但对模型加速没有多大效果。
2.2.2 聚类与伪量化
一种实现伪量化的方案是,利用k-means等聚类算法,步骤如下:
1. 将大小相近的参数聚在一起,分为一类。
2. 每一类计算参数的平均值,作为它们量化后对应的值。
3. 每一类参数存储时,只存储它们的聚类索引。索引和真实值(也就是类内平均值)保存在另外一张表中
4. 推理时,利用索引和映射表,恢复为真实值。
过程如下图所示,
从上可见,当只需要4个类时,我们仅需要2bit就可以实现每个参数的存储了,压缩量达到16倍。推理时通过查找表恢复为浮点值,精度损失可控。结合霍夫曼编码,可进一步优化存储空间。一般来说,当聚类数为N时,我们压缩量为 log(N) / 32。
2.2.3 定点化
与伪量化不同的是,定点化在推理时,不需要还原为浮点数。这需要框架实现算子的定点化运算支持。目前MNN、XNN等移动端AI框架中,均加入了定点化支持。
2.3 剪枝
2.3.1 剪枝流程
剪枝归纳起来就是取其精华去其糟粕。按照剪枝粒度可分为突触剪枝、神经元剪枝、权重矩阵剪枝等。总体思想是,将权重矩阵中不重要的参数设置为0,结合稀疏矩阵来进行存储和计算。通常为了保证performance,需要一小步一小步地进行迭代剪枝。步子大了,容易那个啥的,大家都懂的哈。
常见迭代剪枝流程如下图所示
1. 训练一个performance较好的大模型。
2. 评估模型中参数的重要性。常用的评估方法是,越接近0的参数越不重要。当然还有其他一些评估方法,这一块也是目前剪枝研究的热点。
3. 将不重要的参数去掉,或者说是设置为0。之后可以通过稀疏矩阵进行存储。比如只存储非零元素的index和value。
4. 训练集上微调,从而使得由于去掉了部分参数导致的performance下降能够尽量调整回来。
5. 验证模型大小和performance是否达到了预期,如果没有,则继续迭代进行。
2.3.2 突触剪枝
突触剪枝剪掉神经元之间的不重要的连接。对应到权重矩阵中,相当于将某个参数设置为0。常见的做法是,按照数值大小对参数进行排序,将大小排名最后的k%置零即可,k%为压缩率。具体流程可以参考下面的图例:
剪枝后
2.3.3 神经元剪枝
神经元剪枝则直接将某个节点直接去掉。对应到权重矩阵中,相当于某一行和某一列置零。常见做法是,计算神经元对应的一行和一列参数的平方和的根,对神经元进行重要性排序,将大小排名最后的k%置零。具体流程可以参考下面的图例:
剪枝后
2.3.4 权重矩阵剪枝
除了将权重矩阵中某些零散的参数,或者整行整列去掉外,我们能否将整个权重矩阵去掉呢?答案是肯定的,目前也有很多这方面的研究。NeurIPS 2019有篇文章,Are Sixteen Heads Really Better than One?,深入分析了BERT多头机制中每个头到底有多大用,结果发现很多头其实没啥卵用。他在要去掉的head上,加入mask,来做每个头的重要性分析。
作者先分析了单独去掉每层每个头,WMT任务上BLEU的改变。发现,大多数head去掉后,对整体影响不大。如下图所示
然后作者分析了,每层只保留一个最重要的head后,ACC的变化。可见很多层只保留一个head,performance影响不大。如下图所示
由此可见,直接进行权重矩阵剪枝,也是可行的方案。相比突触剪枝和神经元剪枝,压缩率要大很多。