Pandas学习1

pandas有两种自己独有的基本数据结构Series和DataFrame

Series

数据结构
data    100 300 500
index    0   1   2
或者
index data
0      100
1      300
2      500

创建series对象

In [1]: import numpy as np
In [2]: from pandas import Series,DataFrame
In [3]: import pandas as pd

传递list创建对象,默认创建整数索引
In [4]: s1 = Series([1,3,6,-1,2,8]) 
In [5]: s1
Out[5]: 
0    1
1    3
2    6
3   -1
4    2
5    8
dtype: int64


传入列表自定义索引创建对象
In [9]: s2 = Series([1,3,6,-1,2,8],index = ["a","c","d","e","b","g"])
In [10]: s2
Out[10]: 
a    1
c    3
d    6
e   -1
b    2
g    8
dtype: int64

传入字典创建对象
In [11]: SD = {"python":100,"java":101,"scala":102}
In [12]: s3 = Series(SD)
In [14]: s3
Out[14]: 
java      101
python    100
scala     102
dtype: int64



//显示数据值【values】和索引【index】
In [6]: s1.values
Out[6]: array([ 1,  3,  6, -1,  2,  8])
In [7]: s1.index
Out[7]: RangeIndex(start=0, stop=6, step=1)



In [17]: s1
Out[17]: 
0    1
1    3
2    6
3   -1
4    2
5    8
dtype: int64

自定义索引名字
In [18]: s1.index = ["p1","p2","p3","p4","p5","p6"]
In [19]: s1
Out[19]: 
p1    1
p2    3
p3    6
p4   -1
p5    2
p6    8
dtype: int64



根据索引查看值和修改值
In [20]: s1['p1']
Out[20]: 1
In [21]: s1['p1']=100
In [22]: s1
Out[22]: 
p1    100
p2      3
p3      6
p4     -1
p5      2
p6      8
dtype: int64

判断值是否为空
In [29]: pd.isnull(s1)
Out[29]: 
p1    False
p2    False
p3    False
p4    False
p5    False
p6    False
dtype: bool

In [30]: pd.notnull(s1)
Out[30]: 
p1    True
p2    True
p3    True
p4    True
p5    True
p6    True
dtype: bool


运算
In [31]: s2
Out[31]: 
a    1
c    3
d    6
e   -1
b    2
g    8
dtype: int64
In [32]: s2[s2>5]
Out[32]: 
d    6
g    8
dtype: int64


In [33]: s2*10
Out[33]: 
a    10
c    30
d    60
e   -10
b    20
g    80
dtype: int64

DataFrame

DataFrame几要素:index、columns、values等

通过传递一个list对象来创建一个Series,pandas会默认创建整形索引
In [34]: s = pd.Series([1,3,5,np.nan,6,8])
In [35]: s
Out[35]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

通过传递一个numpy array,时间索引以及列标签创建DataFrame
In [48]: dates = pd.date_range("20170101",periods = 6)

In [49]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list("ABCD"))

In [50]: df
Out[50]: 
                   A         B         C         D
2017-01-01  0.198724  1.455237 -1.165803 -0.474382
2017-01-02  0.622154 -0.280253 -0.492515  0.002470
2017-01-03  1.764839 -1.734531 -0.195002  0.128216
2017-01-04 -0.520130  1.372930 -2.240510  0.362139
2017-01-05  1.530835  0.406480 -1.714226 -0.289591
2017-01-06  0.675166  0.210024 -0.773319 -1.410746
In [51]: dates
Out[51]: 
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05', '2017-01-06'],
              dtype='datetime64[ns]', freq='D')

d1=DataFrame(np.arange(12).reshape((3,4)),index=['a','b','c'],columns=['a1','a2','a3','a4'])    


比较常用的有导入等长列表、字典、numpy数组、数据文件等
In [61]: data = {'name':['zxx','lxx','gxx','hxx'],'age':[12,13,14,15],'addr':['JX','JS','BJ','SH']}
字典数据转换为DataFrame,并指定索引
In [62]: d2 = DataFrame(data)
In [63]: d2
Out[63]: 
  addr  age name
0   JX   12  zxx
1   JS   13  lxx
2   BJ   14  gxx
3   SH   15  hxx

In [64]: d3 = DataFrame(data,columns=['name','age','addr'],index=['a','b','c','d']) 
In [65]: d3
Out[65]: 
  name  age addr
a  zxx   12   JX
b  lxx   13   JS
c  gxx   14   BJ
d  hxx   15   SH

df.dtypes 查看不同列的数据类型
df.Tab键  自动识别所有属性及自定义列
df.head(2) 查看前两行
df.tail(2) 查看尾部两行
df.index 查看索引值
df.columns 查看列名
df.values 查看底层numpy数据


In [56]: df.head(2)
Out[56]: 
                   A         B         C         D
2017-01-01  0.198724  1.455237 -1.165803 -0.474382
2017-01-02  0.622154 -0.280253 -0.492515  0.002470

In [57]: df.tail(2)
Out[57]: 
                   A         B         C         D
2017-01-05  1.530835  0.406480 -1.714226 -0.289591
2017-01-06  0.675166  0.210024 -0.773319 -1.410746

In [58]: df.index
Out[58]: 
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
               '2017-01-05', '2017-01-06'],
              dtype='datetime64[ns]', freq='D')

In [59]: df.columns
Out[59]: Index([u'A', u'B', u'C', u'D'], dtype='object')

In [60]: df.values
Out[60]: 
array([[ 0.19872446,  1.45523672, -1.16580285, -0.47438238],
       [ 0.62215406, -0.28025262, -0.49251531,  0.00247041],
       [ 1.76483913, -1.73453082, -0.19500168,  0.12821624],
       [-0.52013049,  1.37292972, -2.24051045,  0.36213914],
       [ 1.53083459,  0.40647992, -1.71422601, -0.28959076],
       [ 0.67516588,  0.2100239 , -0.77331882, -1.41074624]])

获取数据

In [71]: d3=DataFrame(data,columns=['name','age','addr'],index=['a','b','c','d'])

In [72]: d3
Out[72]: 
       name  age     addr
a  zhanghua   40   jianxi
b   liuting   45   pudong
c    gaofei   50  beijing
d    hedong   46     xian

选择列
In [78]: d3[['name','age']]
Out[78]: 
       name  age
a  zhanghua   40
b   liuting   45
c    gaofei   50
d    hedong   46

选择行
In [84]: d3['a':'c']
Out[84]: 
       name  age     addr
a  zhanghua   40   jianxi
b   liuting   45   pudong
c    gaofei   50  beijing

选择行(利用位置索引)
In [87]: d3[1:3]
Out[87]: 
      name  age     addr
b  liuting   45   pudong
c   gaofei   50  beijing

使用过滤条件
In [90]: d3[d3['age']>40]
Out[90]: 
      name  age     addr
b  liuting   45   pudong
c   gaofei   50  beijing
d   hedong   46     xian


obj.ix[indexs,[columns]]可以根据列或索引同时进行过滤
In [91]: d3.ix[['a','c'],['name','age']]
Out[91]: 
       name  age
a  zhanghua   40
c    gaofei   50

In [93]: d3.ix['a':'c',['name','age']]
Out[93]: 
       name  age
a  zhanghua   40
b   liuting   45
c    gaofei   50

In [94]: d3.ix[0:3,['name','age']]
Out[94]: 
       name  age
a  zhanghua   40
b   liuting   45
c    gaofei   50

修改数据

In [95]: data={'name':['zhanghua','liuting','gaofei','hedong'],'age':[40,45,50,46],'addr':['jianxi','pudong','beijing','xian']}

In [96]: d3=DataFrame(data,columns=['name','age','addr'],index=['a','b','c','d'])

删除行
In [97]: d3.drop('d',axis=0)
Out[97]: 
       name  age     addr
a  zhanghua   40   jianxi
b   liuting   45   pudong
c    gaofei   50  beijing

删除列
In [99]: d3.drop('age',axis=1)
Out[99]: 
       name     addr
a  zhanghua   jianxi
b   liuting   pudong
c    gaofei  beijing
d    hedong     xian

添加一行,注意需要ignore_index=True
In [103]: d4 = d3.append({'name':'wxx','age':38,'addr':'HN'},ignore_index=True)

In [104]: d4
Out[104]: 
       name  age     addr
0  zhanghua   40   jianxi
1   liuting   45   pudong
2    gaofei   50  beijing
3    hedong   46     xian
4       wxx   38       HN

In [105]: d4.ix['4','age']=100

In [106]: d4
Out[106]: 
       name    age     addr
0  zhanghua   40.0   jianxi
1   liuting   45.0   pudong
2    gaofei   50.0  beijing
3    hedong   46.0     xian
4       wxx   38.0       HN
4       NaN  100.0      NaN

修改索引
In [111]: d3.index=['a','b','c','d'] 

In [112]: d3
Out[112]: 
       name  age     addr
a  zhanghua   40   jianxi
b   liuting   45   pudong
c    gaofei   50  beijing
d    hedong   46     xian

汇总统计

常用统计方法
count	统计非NA的数量
describe	统计列的汇总信息
min、max	计算最小值和最大值
sum	求总和
mean	求平均数
var	样本的方差
std	样本的标准差



导入和保存数据
读取csv文件/或者逗号分隔的txt文件
pd.read_csv('wu.csv')
读取HDFS数据
pd.read_hdf('wu.h5',df)
写入为csv文件
df.to_csv('wu.csv')
写入HDF5存储
df.to_hdf('wu.h5','df')



In [15]: inputfile = '/home/hadoop/wujiadong/wu1_stud_score.txt'
In [16]: data = pd.read_csv(inputfile)
In [40]: df = DataFrame(data)
In [41]: df.head(3)
Out[41]: 
    stud_code  sub_code sub_name  sub_tech  sub_score   stat_date
0  2015101000     10101     数学分析       NaN         90  0000-00-00
1  2015101000     10102     高等代数       NaN         88  0000-00-00
2  2015101000     10103     大学物理       NaN         67  0000-00-00


In [42]: df.count()
Out[42]: 
stud_code    121
sub_code     121
sub_name     121
sub_tech       0
sub_score    121
stat_date    121
dtype: int64


In [43]: df['sub_score'].describe()
Out[43]: 
count    121.000000
mean      78.561983
std       12.338215
min       48.000000
25%       69.000000
50%       80.000000
75%       89.000000
max       98.000000
Name: sub_score, dtype: float64

求学生成绩标准差
In [44]: df['sub_score'].std()
Out[44]: 12.338214729032906



应用函数和映射

In [45]: d1 = DataFrame(np.arange(12).reshape((3,4)),index=['a','b','c'],columns=['a1','a2','a3','a4'])

In [46]: d1
Out[46]: 
   a1  a2  a3  a4
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11

处理每个元素
In [47]: d1.applymap(lambda x:x+2)
Out[47]: 
   a1  a2  a3  a4
a   2   3   4   5
b   6   7   8   9
c  10  11  12  13

处理行数据
In [54]: d1.ix[1].map(lambda x:x+2)
Out[54]: 
a1    6
a2    7
a3    8
a4    9
Name: b, dtype: int64

列级处理
In [62]: d1.apply(lambda x:x.max()-x.min(),axis=0)
Out[62]: 
a1    8
a2    8
a3    8
a4    8
dtype: int64

参考资料
1)10 Minutes to pandas:
http://pandas.pydata.org/pandas-docs/stable/10min.html
2)十分钟搞定pandas:
http://www.cnblogs.com/chaosimple/p/4153083.html
3)Pandas使用:
https://github.com/qiwsir/StarterLearningPython/blob/master/311.md
4)python cookbook:
http://pandas.pydata.org/pandas-docs/stable/cookbook.html#cookbook

posted @ 2017-03-13 21:43  邬家栋  阅读(973)  评论(0编辑  收藏  举报