spark SQL学习(load和save操作)
load操作:主要用于加载数据,创建出DataFrame
save操作:主要用于将DataFrame中的数据保存到文件中
代码示例(默认为parquet数据源类型)
package wujiadong_sparkSQL
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by Administrator on 2017/2/3.
*/
object GenericLoadSave {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("GenericLoadSave")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
//load默认是加载parquet格式文件
val usersDF = sqlContext.read.load("hdfs://master:9000/student/2016113012/spark/users.parquet")
usersDF.write.save("hdfs://master:9000/student/2016113012/parquet_out1")
}
}
提交集群运行
hadoop@master:~/wujiadong$ spark-submit --class wujiadong_sparkSQL.GenericLoadSave --executor-memory 500m --total-executor-cores 2 /home/hadoop/wujiadong/wujiadong.spark.jar
运行后查看是否保存成功
hadoop@slave01:~$ hadoop fs -ls /student/2016113012/parquet_out1
17/02/03 12:06:26 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 4 items
-rw-r--r-- 3 hadoop supergroup 0 2017-02-03 12:05 /student/2016113012/parquet_out1/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 476 2017-02-03 12:05 /student/2016113012/parquet_out1/_common_metadata
-rw-r--r-- 3 hadoop supergroup 841 2017-02-03 12:05 /student/2016113012/parquet_out1/_metadata
-rw-r--r-- 3 hadoop supergroup 864 2017-02-03 12:05 /student/2016113012/parquet_out1/part-r-00000-8025e2a8-ab06-4558-9d76-bb2cad0042cf.gz.parquet
手动指定数据源类型(进行格式转换很方便)
默认情况下不指定数据源类型的话就是parquet类型
代码示例(手动指定数据源类型)
package wujiadong_sparkSQL
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by Administrator on 2017/2/3.
*/
object ManuallySpecifyOptions {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("ManuallySpecifyOptions")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
//load读其他格式文件如json时,需要先用format指定格式
val peopleDF = sqlContext.read.format("json").load("hdfs://master:9000/student/2016113012/people.json")
peopleDF.select("name").write.format("parquet").save("hdfs://master:9000/sudent/2016113012/people_out1")
}
}
提交集群运行
hadoop@master:~/wujiadong$ spark-submit --class wujiadong_sparkSQL.ManuallySpecifyOptions --executor-memory 500m --total-executor-cores 2 /home/hadoop/wujiadong/wujiadong.spark.jar
查看是否运行成功
hadoop@master:~/wujiadong$ hadoop fs -ls hdfs://master:9000/sudent/2016113012/people_out1
17/02/03 12:24:27 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 4 items
-rw-r--r-- 3 hadoop supergroup 0 2017-02-03 12:22 hdfs://master:9000/sudent/2016113012/people_out1/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 207 2017-02-03 12:22 hdfs://master:9000/sudent/2016113012/people_out1/_common_metadata
-rw-r--r-- 3 hadoop supergroup 327 2017-02-03 12:22 hdfs://master:9000/sudent/2016113012/people_out1/_metadata
-rw-r--r-- 3 hadoop supergroup 352 2017-02-03 12:22 hdfs://master:9000/sudent/2016113012/people_out1/part-r-00000-4d1a62a4-f550-4bde-899f-35e9aabfdc0c.gz.parquet
Save Mode
SaveMode.ErrorIfExists (默认):如果目标位置已经存在数据,那么抛出一个异常
SaveMode.Append:如果目标位置已经存在数据,那么将数据追加进去
SaveMode.Overwrite:如果目标位置已经存在数据,那么就将已经存在的数据删除,用新数据进行覆盖
SaveMode.Ignore:如果目标位置已经存在数据,那么就忽略,不做任何操作
代码示例1
package wujiadong_sparkSQL
import org.apache.spark.sql.{SQLContext, SaveMode}
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by Administrator on 2017/2/3.
*/
object SaveModelTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SaveModelTest")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val peopleDF = sqlContext.read.format("json").load("hdfs://master:9000/student/2016113012/people.json")
peopleDF.save("hdfs://master:9000/student/2016113012/people.json",SaveMode.ErrorIfExists)
}
}
因为这种save mode文件已存在就报错
package wujiadong_sparkSQL
import org.apache.spark.sql.{SQLContext, SaveMode}
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by Administrator on 2017/2/3.
*/
object SaveModelTest {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("SaveModelTest")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val peopleDF = sqlContext.read.format("json").load("hdfs://master:9000/student/2016113012/people.json")
peopleDF.save("hdfs://master:9000/student/2016113012/people.json",SaveMode.Overwrite)
}
}
这种会直接覆盖