Reactor模型-多线程程版

1.概述

Reactor单线程版本的设计中,I/O任务乃至业务逻辑都由Reactor线程来完成,这无疑增加了Reactor线程的负担,高负载情况下必然会出现性能瓶颈。此外,对于多处理器的服务器来说,单个Reactor线程也发挥不了多CPU的最大功效。下面我们对之前单线程版的Reactor进行改进。

改进方向
  1. 接受客户端连接请求的不在是单个线程-Acceptor,而是一个NIO线程池。
  2. I/O处理也不再是单个线程处理,而是交给一个I/O线程池进行处理。

其实改进方向很明确:就是针对可能的系统瓶颈,由单线程改进为多线程处理。这样的方案带来的好处显而易见,增加可靠性的同时也发挥多线程的优势,在高负载的情况下能够从容应对。

Key Word

Java NIO 事件驱动 主从Reactor模型


2.code未动,test先行

首先定义服务端用于处理请求的Handler,通过实现ChannelHandler接口完成。

public class SimpleServerChannelHandler implements ChannelHandler {
    
    private static Logger LOG = LoggerFactory.getLogger(SimpleServerChannelHandler.class);
    
    //记录接受消息的次数
    public volatile int receiveSize;
    
    //记录抛出的异常
    public volatile Throwable t;
    
    @Override
    public void channelActive(NioChannel channel) {
        if(LOG.isDebugEnabled()){
            LOG.debug("ChannelActive");
        }
    }

    @Override
    public void channelRead(NioChannel channel, Object msg) throws Exception {
        
        ByteBuffer bb = (ByteBuffer)msg;

        byte[] con = new byte[bb.remaining()];
        bb.get(con);

        String str = new String(con,0,con.length);

        String resp = "";
        switch(str){
        case "request1":resp = "response1";break;
        case "request2":resp = "response2";break;
        case "request3":resp = "response3";break;
        default :resp = "Hello Client";
        }

        ByteBuffer buf = ByteBuffer.allocate(resp.getBytes().length);
        buf.put(resp.getBytes());
        
        receiveSize++;
        
        channel.sendBuffer(buf);
    }

    @Override
    public void exceptionCaught(NioChannel channel, Throwable t)
            throws Exception {
        this.t = t;
        channel.close();
    }

}

Junit测试用例,setUp用于启动Server端和Client端。

public class ReactorTest extends BaseTest{
    private static final Logger LOG = LoggerFactory.getLogger(ReactorTest.class);

    private static String HOST = "localhost";

    private static int PORT = 8888;

    private static Client client;
    private static Server server;

    static SimpleServerChannelHandler h;

    @BeforeClass
    public static void setUp() throws Exception {
        startServer();
        startClient();
    }
    private static void startServer() throws Exception{
        server = new Server();
        ReactorPool mainReactor = new ReactorPool();
        ReactorPool subReactor = new ReactorPool();

        h = new SimpleServerChannelHandler();
        server.reactor(mainReactor, subReactor)
        .handler(h)
        .bind(new InetSocketAddress(HOST,PORT));
    }
    private static void startClient() throws SocketException{
        client = new Client();
        client.socket().setTcpNoDelay(true);
        client.connect(
                new InetSocketAddress(HOST,PORT));
    }
    @Test
    public void test() {
        LOG.info("Sucessful configuration");
    }

    @Test
    public void testBaseFunction(){
        LOG.debug("testBaseFunction()");

        String msg ="Hello Reactor";
        ByteBuffer resp = client.syncSend(ByteBuffer.wrap(msg.getBytes()));
        byte[] res = new byte[resp.remaining()];
        resp.get(res);

        Assert.assertEquals("Hello Client", new String(res,0,res.length));
    }

    @Test
    public void testMultiSend(){

        int sendSize = 1024;

        for(int i = 0; i < sendSize; i++){
            ByteBuffer bb = ByteBuffer.wrap("Hello Reactor".getBytes());
            ByteBuffer resp = client.syncSend(bb);
            byte[] res = new byte[resp.remaining()];
            resp.get(res);

            Assert.assertEquals("Hello Client", new String(res,0,res.length));
        }
        Assert.assertEquals(sendSize, h.receiveSize);
    }
    @Test
    public void testTooLongReceivedByteSizeEexception(){
        LOG.debug("testTooLongReceivedByteSizeEexception()");

        int threshold = 1024;
        byte[] dest = new byte[threshold + 1];
        Random r = new Random();
        r.nextBytes(dest);
        client.syncSend(ByteBuffer.wrap(dest));
        
        Assert.assertEquals(IllegalArgumentException.class, h.t.getClass());
        
        Assert.assertEquals("Illegal data length, len:" + (threshold+1), h.t.getMessage());
    }
    @AfterClass
    public static void tearDown() throws Exception {
        server.close();
        client.close();
    }
}

一共进行三项基本测试:

testBaseFunction

实现了基本发送接收消息的功能。

testMultiSend

重复发送消息,并且记录消息收发的次数。

testTooLongReceivedByteSizeEexception

测试server端在接收到异常码流的情况下,是否抛出异常。

3.设计及实现

3.1 Reactor和ReactorPool

Reactor作用就是不断进行轮询并检查是否有已经就绪的事件,如果有,那么就将事件分发给对应的Handler进行处理。这个角色其实就是NIO编程中的多路复用器java.nio.channels.Selector。因此,Reactor聚合一个Selector类型成员变量。轮询的过程如下:

public class Reactor extends Thread{

//...

    private Selector selector;

    private volatile boolean isShutdown;

    Reactor(){
        try {
            selector = Selector.open();
        } catch (IOException e) {
            throw new RuntimeException("failed to open a new selector", e);
        }
    }
    
@Override
    public void run() {
        for(;;){
            try {
                getSelector().select(wakenUp);
                Set<SelectionKey> keys;
                synchronized(this){
                    keys = getSelector().selectedKeys();
                }
                Iterator<SelectionKey> it = keys.iterator();
                while(it.hasNext()){
                    SelectionKey key = it.next();
                    processSelectedKey(key);
                    it.remove();
                }
                if(isShutdown()){
                    break;
                }
            } catch (Throwable e) {
                LOG.warn("Unexpected exception in the selector loop.", e);
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e1) { }
            }
        }
    }
}

processSelectedKey(key)中进行的就是根据就绪事件key.readyOps()进行相应操作:

    private void processSelectedKey(SelectionKey key){
        try {       
            NioChannel nioChannel = (NioChannel)key.attachment();

            if (!nioChannel.isOpen()) {
                LOG.warn("trying to do i/o on a null socket");
                return;
            }

            int readyOps = key.readyOps();
            if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                nioChannel.sink().doRead();
            }
            if((readyOps & SelectionKey.OP_WRITE) != 0){
                nioChannel.sink().doSend();
            }
            if((readyOps & SelectionKey.OP_CONNECT) != 0){
                //remove OP_CONNECT
                key.interestOps((key.interestOps() & ~SelectionKey.OP_CONNECT));
            }
        }catch (Throwable t) {
            if (LOG.isDebugEnabled()) {
                LOG.debug("Throwable stack trace", t);
            }
            closeSocket();
        }
    }

这里的NioChannel是抽象类,是对NIO编程中的Channel语义的抽象(后面会有分析)。

此外,Reactor肯定要提供一个注册接口啦。。。

    public SelectionKey register(final NioChannel sc, final int interestOps, Object attachment){
        if(sc == null){
            throw new NullPointerException("SelectableChannel");
        }
        if(interestOps == 0){
            throw new IllegalArgumentException("interestOps must be non-zero.");
        }
        SelectionKey key;
        try {
            key = sc.channel().register(getSelector(), interestOps, attachment);
        } catch (ClosedChannelException e) {
            throw new RuntimeException("failed to register a channel", e);
        }
        return key;
    }

ReactorPool是一个Reactor的线程池,这里就通过简单的数组形式进行模拟:

public class ReactorPool {

    private static final Logger LOG = LoggerFactory.getLogger(ReactorPool.class);

    private Reactor[] reactors;

    private AtomicInteger index = new AtomicInteger();
    
    //线程数默认为CPU数*2
    private final int DEFAULT_THREADS = Runtime.getRuntime().availableProcessors() * 2;

    public ReactorPool (){
        this(0);
    }
    public ReactorPool(int nThreads){
        if(nThreads < 0){
            throw new IllegalArgumentException("nThreads must be nonnegative number");
        }
        if(nThreads == 0){
            nThreads = DEFAULT_THREADS;
        }
        reactors = new Reactor[nThreads];
        for(int i = 0; i < nThreads; i++){
            boolean succeed = false;
            try{
                reactors[i] = new Reactor();
                succeed = true;
            }catch(Exception e){
                throw new IllegalStateException("failed to create a Reactor", e);
            }finally{
                if (!succeed) {
                    for (int j = 0; j < i; j ++) {
                        reactors[j].close();
                    }
                }
            }
        }
    }

    public Reactor next(){
        return reactors[index.incrementAndGet() % reactors.length];
    }

    public void close(){
        for(int i = 0; i < reactors.length; i++){
            reactors[i].setShutdown(true);
            reactors[i].close();
        }
    }
}

3.2 NioChannel和NioChannelSink

在进行Java原生Nio编程的过程中,会涉及到两种类型的Channel:

  • java.nio.channels.SocketChannel
  • java.nio.channels.ServerSocketChannel

其分别作为客户端和服务端调用接口。为了统一其公共行为,这里抽象出一个抽象类NioChannel,其成员组成如下:

  • 聚合一个SelectableChannel类型(SocketChannel和ServerSocketChannel的公共父类)的成员变量。
  • 持有一个所属Reactor对象的引用
  • 聚合一个NioChannelSink类型成员变量。

NioChannelSink是将NioChannel的底层读写功能独立出来。一方面使NioChannel避免集成过多功能而显得臃肿,另一方面分离出底层传输协议,为以后底层传输协议的切换做准备。(TCP vs UDP,NIO、OIO、AIO)从这种意义上说,NioChannel取名为Channel貌似更合理。

public abstract class NioChannel {

    protected Reactor reactor;

    protected SelectableChannel sc;

    protected SelectionKey selectionKey;

    private NioChannelSink sink;

    protected volatile ChannelHandler handler;
    
    public NioChannel(SelectableChannel sc, int interestOps){
        this.sc = sc;
        try {
            sc.configureBlocking(false);
        } catch (IOException e) {
            e.printStackTrace();
        }
        sink = nioChannelSink();
    }
    
    protected void fireChannelRead(ByteBuffer bb){
        try {
            handler.channelRead(this, bb);
        } catch (Exception e) {
            fireExceptionCaught(e);
        }
    }
    protected void fireExceptionCaught(Throwable t){
        try {
            handler.exceptionCaught(this, t);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    //。。。
    
    public abstract NioChannelSink nioChannelSink();

    public interface NioChannelSink{

        void doRead();

        void doSend();

        void sendBuffer(ByteBuffer bb);
        
        void close();
    }
}

再来分析下NioChannel需要提供哪些功能:

首先,NIO编程中SocketChannel或ServerSocketChannel需要注册到多路复用器Selector中。那么这里就抽象成了NioChannel和Reactor的交互。

public void register(Reactor reactor, int interestOps){
    this.reactor = reactor;
    try {
        selectionKey = sc.register(reactor().getSelector(), interestOps, this);
    } catch (ClosedChannelException e) {
        e.printStackTrace();
    }
}

这里将NioChannel对象作为附件,在Reactor中心轮询到ready事件后,会根据事件的类型(OP_ACCEPT OP_READ等),从SelectionKey中取出绑定的附件NioChannel

NioChannel nioChannel = (NioChannel)key.attachment();

然后根据进行key.readyOps()做相应操作。这在Reactor中已经做过分析。

其次,作为Channel肯定要提供绑定bind和连接connect的功能了:

public abstract void bind(InetSocketAddress remoteAddress) throws Exception;
    
public abstract void connect(InetSocketAddress remoteAddress) throws Exception;

这里用抽象方法是要将实现交由子类来完成。

最后,是用户通过NioChannel发送的消息的函数:

public void sendBuffer(ByteBuffer bb){
    sink().sendBuffer(bb);
}

protected final void enableWrite(){
    int i = selectionKey.interestOps();
    if((i & SelectionKey.OP_WRITE) == 0){
        selectionKey.interestOps(i | SelectionKey.OP_WRITE);
    }
}
protected final void disableWrite(){
    int i = selectionKey.interestOps();
    if((i & SelectionKey.OP_WRITE) == 1){
        selectionKey.interestOps(i & (~SelectionKey.OP_WRITE));         
    }
}

3.3 NioServerSocketChannel和NioSocketChannel

NioServerSocketChannel和NioSocketChannel是抽象类NioChannel的一个子类,NioServerSocketChannel和java.nio.channels.ServerSocketChannel的语义是一致的,供服务端使用,绑定指定端口,监听客户端发起的连接请求,并交由相应Handler处理。而NioSocketChannel和java.nio.channels.NioSocketChannel语义一致,作为通信的一个通道。

public class NioServerSocketChannel extends NioChannel{

    private static final Logger LOG = LoggerFactory.getLogger(NioServerSocketChannel.class);
    
    public NioServerSocketChannel(){
        super(newSocket());
    }
    
    public static ServerSocketChannel newSocket(){
        ServerSocketChannel socketChannel = null;
        try {
            socketChannel = ServerSocketChannel.open();
        } catch (IOException e) {
            LOG.error("Unexpected exception occur when open ServerSocketChannel");
        }
        return socketChannel;
    }
    
    @Override
    public NioChannelSink nioChannelSink() {
        return new NioServerSocketChannelSink();
    }
    
    class NioServerSocketChannelSink implements NioChannelSink{
        //。。。
    }
        @Override
    public void bind(InetSocketAddress remoteAddress) throws Exception {
        ServerSocketChannel ssc = (ServerSocketChannel)sc;
        ssc.bind(remoteAddress);
    }
    @Override
    public void connect(InetSocketAddress remoteAddress) throws Exception {
        throw new UnsupportedOperationException();
    }
}

这里获取ServerSocketChannel实例的方式是通过ServerSocketChannel.open(),其实也可以通过反射来获取,这样就能将ServerSocketChannel和SocketChannel的实例化逻辑进行统一,我们只需要在实例化Channel的时候将ServerSocketChannel.class 或 SocketChannel.class当作参数传入即可。

NioSocketChannel的实现如下:

public class NioSocketChannel extends NioChannel{

    private static final Logger LOG = LoggerFactory.getLogger(NioSocketChannel.class);

    public NioSocketChannel() throws IOException{
        super( newSocket());
    }
    public NioSocketChannel(SocketChannel sc) throws IOException{
        super(sc);
    }
    public static SocketChannel newSocket(){
        SocketChannel socketChannel = null;
        try {
            socketChannel = SocketChannel.open();
        } catch (IOException e) {
        }
        return socketChannel;
    }

    @Override
    public NioChannelSink nioChannelSink() {
        return new NioSocketChannelSink();
    }
    
    class NioSocketChannelSink implements NioChannelSink{
        //。。。
    }
    
    @Override
    public void bind(InetSocketAddress remoteAddress) throws Exception {
        throw new UnsupportedOperationException();
    }
    @Override
    public void connect(InetSocketAddress remoteAddress) throws Exception {
        SocketChannel socketChannel = (SocketChannel)sc;
        socketChannel.connect(remoteAddress);
    }
}

3.4 NioServerSocketChannelSink和NioSocketChannelSink

通过上面分析可知,NioChannel的只向上提供了操作接口,而具体的底层读写等功能全部代理给了NioChannelSink完成。接下来分析下NioChannelSink的两个子类NioServerSocketChannelSink和NioSocketChannelSink。

首先再看下NioChannelSink的接口:

    public interface NioChannelSink{

        void doRead();

        void doSend();

        void sendBuffer(ByteBuffer bb);
        
        void close();
    }

对于NioChannelSink的两个实现类来说,每个方法所对应的语义如下:

doRead()

  • NioServerSocketChannelSink:通过accept()接受客户端的请求。
  • NioSocketChannelSink:读取NioChannel中的数据

doSend()

  • NioServerSocketChannelSink:不支持。
  • NioSocketChannelSink:将缓冲区中数据写入NioChannel

sendBuffer()

  • NioServerSocketChannelSink:不支持。
  • NioSocketChannelSink:发送数据,其实就是将待发送数据加入缓冲队列中。

close()

  • NioServerSocketChannelSink:关闭Channel。
  • NioSocketChannelSink:同上。

当然了,作为网络编程中的Channel所提供的功能原比这里要多且复杂,作为学习Demo,这里只实现了最常用的几个功能。

下面看下NioServerSocketChannelSink的实现:

public class NioServerSocketChannel extends NioChannel{

    //。。。
    
    class NioServerSocketChannelSink implements NioChannelSink{

        public void doRead() {
            try {
                ServerSocketChannel ssc = (ServerSocketChannel)sc;
                handler.channelRead(NioServerSocketChannel.this,
                        new NioSocketChannel(ssc.accept()));
                if(LOG.isDebugEnabled()){
                    LOG.debug("Dispatch the SocketChannel to SubReactorPool");
                }
            } catch (Exception e1) {
                e1.printStackTrace();
            }
        }

        public void doSend(){
            throw new UnsupportedOperationException();
        }

        @Override
        public void sendBuffer(ByteBuffer bb) {
            throw new UnsupportedOperationException();
        }

        @Override
        public void close() {
            try {
                if(sc != null){
                    sc.close();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }// end NioChannelSink
    
    //。。。
}

下面是NioSocketChannelSink实现:

public class NioSocketChannel extends NioChannel{
    
    //。。。
    
    class NioSocketChannelSink implements NioChannelSink{
        
        private static final int MAX_LEN = 1024;
        
        ByteBuffer lenBuffer = ByteBuffer.allocate(4);

        ByteBuffer inputBuffer = lenBuffer;

        ByteBuffer outputDirectBuffer = ByteBuffer.allocateDirect(1024 * 64);

        LinkedBlockingQueue<ByteBuffer> outputQueue = new LinkedBlockingQueue<ByteBuffer>();

        public void close(){
            //clear buffer
            outputDirectBuffer = null;

            try {
                if(sc != null){
                    sc.close();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        public void doRead() {
            
            SocketChannel socketChannel = (SocketChannel)sc;

            int byteSize;
            try {
                byteSize = socketChannel.read(inputBuffer);

                if(byteSize < 0){
                    LOG.error("Unable to read additional data");
                    throw new RuntimeException("Unable to read additional data");
                }
                if(!inputBuffer.hasRemaining()){

                    if(inputBuffer == lenBuffer){
                        //read length
                        lenBuffer.flip();
                        int len = lenBuffer.getInt();
                        if(len < 0 || len > MAX_LEN){
                            throw new IllegalArgumentException("Illegal data length, len:" + len);
                        }
                        //prepare for receiving data
                        inputBuffer = ByteBuffer.allocate(len);
                        inputBuffer.clear();
                    }else{
                        //read data
                        if(inputBuffer.hasRemaining()){
                            socketChannel.read(inputBuffer);
                        }
                        if(!inputBuffer.hasRemaining()){
                            inputBuffer.flip();
                            
                            fireChannelRead(inputBuffer);
                            
                            //clear lenBuffer and waiting for next reading operation 
                            lenBuffer.clear();
                            inputBuffer = lenBuffer;
                        }
                    }
                }
            } catch (Throwable t) {
                if(LOG.isDebugEnabled()){
                    LOG.debug("Exception :" + t);
                }
                fireExceptionCaught(t);
            }
        }

        public void doSend(){
            /**
             * write data to channel:
             * step 1: write the length of data(occupy 4 byte)
             * step 2: data content
             */
            try {
                if(outputQueue.size() > 0){
                    ByteBuffer directBuffer = outputDirectBuffer;
                    directBuffer.clear();
                    for(ByteBuffer buf : outputQueue){
                        buf.flip();

                        if(buf.remaining() > directBuffer.remaining()){
                            //prevent BufferOverflowException
                            buf = (ByteBuffer) buf.slice().limit(directBuffer.remaining());
                        }
                        //transfers the bytes remaining in buf into  directBuffer
                        int p = buf.position();
                        directBuffer.put(buf);
                        //reset position
                        buf.position(p);

                        if(!directBuffer.hasRemaining()){
                            break;
                        }
                    }
                    directBuffer.flip();
                    int sendSize = ((SocketChannel)sc).write(directBuffer);

                    while(!outputQueue.isEmpty()){
                        ByteBuffer buf = outputQueue.peek();
                        int left = buf.remaining() - sendSize;
                        if(left > 0){
                            buf.position(buf.position() + sendSize);
                            break;
                        }
                        sendSize -= buf.remaining();
                        outputQueue.remove();
                    }
                }

                synchronized(reactor){
                    if(outputQueue.size() == 0){
                        //disable write
                        disableWrite();
                    }else{
                        //enable write
                        enableWrite();
                    }
                }
            } catch (Throwable t) {
                fireExceptionCaught(t);
            }
        }
        private ByteBuffer wrapWithHead(ByteBuffer bb){
            bb.flip();
            lenBuffer.clear();
            int len = bb.remaining();
            lenBuffer.putInt(len);
            ByteBuffer resp = ByteBuffer.allocate(len+4);

            lenBuffer.flip();
            resp.put(lenBuffer);
            resp.put(bb);

            return resp;
        }
        public void sendBuffer(ByteBuffer bb){
            try{
                synchronized(this){
                    //wrap ByteBuffer with length header
                    ByteBuffer wrapped = wrapWithHead(bb);

                    outputQueue.add(wrapped);

                    enableWrite();
                }
            }catch(Exception e){
                LOG.error("Unexcepted Exception: ", e);
            }
        }
    }// end NioSocketChannelSink
    
    //。。。
}

NioSocketChannelSink中的读写功能在Reactor单线程版本里已经分析过,这里就不再赘述。

3.5 ChannelHandler

ChannelHandler是Reactor框架提供给用户进行自定义的接口。接口提供了常用的接口:

public interface ChannelHandler {
    
    void channelActive(NioChannel channel);
    
    void channelRead(NioChannel channel, Object msg) throws Exception;
    
    void exceptionCaught(NioChannel channel, Throwable t) throws Exception;
}

4. 总结

4.1 软件设计中的一些注意点

时刻紧绷一根弦:资源是有限的

比如在网络编程中,每建立一个Socket连接都会消耗一定资源,当回话结束后一定要关闭。此外,必须考虑非正常流程时的情况。比如发生异常,可能执行不到关闭资源的操作。 如ReactorPool的实例化过程:

    public ReactorPool(int nThreads){
        //。。
        reactors = new Reactor[nThreads];
        for(int i = 0; i < nThreads; i++){
            boolean succeed = false;
            try{
                reactors[i] = new Reactor();
                succeed = true;
            }catch(Exception e){
                throw new IllegalStateException("failed to create a Reactor", e);
            }finally{
                if (!succeed) {
                    for (int j = 0; j < i; j ++) {
                        reactors[j].close();
                    }
                }
            }
        }
    }

当实例化过程中发送异常时,记得要及时回收已占用资源。

又比如在通信一端接受字节流的时候需要注意对异常码流的处理,避免码流过大而耗尽内存,导致OOM。

并发操作分析

  • 这个类是线程安全的吗?
  • 这个方法是在哪个线程中执行的?
  • 是否是热点区域?
  • 是否存在并发修改的可能?
  • 并发修改是否可见?

在单线程版的Reactor模型中,所有的逻辑都由Reactor单个线程执行,不存在多线程并发操作的情况,那么在我们添加了线程池workerPool后,情况又会怎么样呢?

一般我们在分析并发性问题,通常的做法是先找到可能被多个线程共同访问的类,再分析下这个类是否是线程安全的。如何判断某个类是否是线程安全的?

  1. 该类是否是有状态的,无状态的类一定是线程安全的。
  2. 如果有状态,是否可变。如果一个类状态不可变,那么肯定也是线程安全的。

所谓的状态暂可以简单理解为是否有成员变量,不管是静态成员变量还是普通成员变量。

关于"单一职责"

单一职责原则是面向对象软件设计的基本原则之一,难点在于接口的职责如何划分,而职责的划分又需要具体问题具体考虑。拿本次这个小Demo来说,NioChannel的职责是作为数据传输通道,而通道中数据传输方式可能有很多种,那么这里就抽象出一个NioChannelSink接口负责具体传输方式的实现。

职责粒度的划分需要根据需求好好把控。过粗不利于扩展,过细不利于实现。



作者:TopGun_Viper
链接:https://www.jianshu.com/p/847600114337
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
posted @ 2018-12-19 17:00  上台阶  阅读(761)  评论(0编辑  收藏  举报