Fork me on GitHub

Python之路,Day8 - Python基础 面向对象高级进阶与socket基础

类的成员

类的成员可以分为三大类:字段、方法和属性

注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段。而其他的成员,则都是保存在类中,即:无论对象的多少,在内存中只创建一份。

一、字段

字段包括:普通字段和静态字段,他们在定义和使用中有所区别,而最本质的区别是内存中保存的位置不同,

  • 普通字段属于对象
  • 静态字段属于
复制代码
class Province:

    # 静态字段
    country = '中国'def __init__(self, name):

        # 普通字段
        self.name = name


# 直接访问普通字段
obj = Province('河北省')
print obj.name

# 直接访问静态字段
Province.country
复制代码

由上述代码可以看出【普通字段需要通过对象来访问】【静态字段通过类访问】,在使用上可以看出普通字段和静态字段的归属是不同的。其在内容的存储方式类似如下图:

由上图可是:

  • 静态字段在内存中只保存一份
  • 普通字段在每个对象中都要保存一份

应用场景: 通过类创建对象时,如果每个对象都具有相同的字段,那么就使用静态字段

二、方法

方法包括:普通方法、静态方法和类方法,三种方法在内存中都归属于类,区别在于调用方式不同。

  • 普通方法:由对象调用;至少一个self参数;执行普通方法时,自动将调用该方法的对象赋值给self
  • 类方法:由调用; 至少一个cls参数;执行类方法时,自动将调用该方法的复制给cls
  • 静态方法:由调用;无默认参数;
 方法的定义和使用

相同点:对于所有的方法而言,均属于类(非对象)中,所以,在内存中也只保存一份。

不同点:方法调用者不同、调用方法时自动传入的参数不同。

三、属性  

如果你已经了解Python类中的方法,那么属性就非常简单了,因为Python中的属性其实是普通方法的变种。

对于属性,有以下三个知识点:

  • 属性的基本使用
  • 属性的两种定义方式

1、属性的基本使用


# ############### 定义 ###############class Foo:

    def func(self):
        pass# 定义属性    @property
    def prop(self):
        pass# ############### 调用 ###############
foo_obj = Foo()

foo_obj.func()
foo_obj.prop   #调用属性
复制代码

由属性的定义和调用要注意一下几点:

  • 定义时,在普通方法的基础上添加 @property 装饰器;
  • 定义时,属性仅有一个self参数
  • 调用时,无需括号
               方法:foo_obj.func()
               属性:foo_obj.prop

注意:属性存在意义是:访问属性时可以制造出和访问字段完全相同的假象

        属性由方法变种而来,如果Python中没有属性,方法完全可以代替其功能。

实例:对于主机列表页面,每次请求不可能把数据库中的所有内容都显示到页面上,而是通过分页的功能局部显示,所以在向数据库中请求数据时就要显示的指定获取从第m条到第n条的所有数据(即:limit m,n),这个分页的功能包括:

  • 根据用户请求的当前页和总数据条数计算出 m 和 n
  • 根据m 和 n 去数据库中请求数据 
    # ############### 定义 ###############class Pager:
        
        def __init__(self, current_page):
            # 用户当前请求的页码(第一页、第二页...)
            self.current_page = current_page
            # 每页默认显示10条数据
            self.per_items = 10 
    
    
        @property
        def start(self):
            val = (self.current_page - 1) * self.per_items
            return val
    
        @property
        def end(self):
            val = self.current_page * self.per_items
            return val
    
    # ############### 调用 ###############
    p = Pager(1)
    p.start 就是起始值,即:m
    p.end   就是结束值,即:n
    复制代码

    从上述可见,Python的属性的功能是:属性内部进行一系列的逻辑计算,最终将计算结果返回

    2、属性的两种定义方式

    属性的定义有两种方式:

    • 装饰器 即:在方法上应用装饰器
    • 静态字段 即:在类中定义值为property对象的静态字段

    装饰器方式:在类的普通方法上应用@property装饰器

    我们知道Python中的类有经典类和新式类,新式类的属性比经典类的属性丰富。( 如果类继object,那么该类是新式类 )
    经典类,具有一种@property装饰器(如上一步实例)


# ############### 定义 ###############    class Goods:

    @property
    def price(self):
        return "wupeiqi"# ############### 调用 ###############
obj = Goods()
result = obj.price  # 自动执行 @property 修饰的 price 方法,并获取方法的返回值
复制代码

新式类,具有三种@property装饰器

复制代码
# ############### 定义 ###############class Goods(object):

    @property
    def price(self):
        print '@property'

    @price.setter
    def price(self, value):
        print '@price.setter'

    @price.deleter
    def price(self):
        print '@price.deleter'# ############### 调用 ###############
obj = Goods()

obj.price          # 自动执行 @property 修饰的 price 方法,并获取方法的返回值
obj.price = 123    # 自动执行 @price.setter 修饰的 price 方法,并将  123 赋值给方法的参数del obj.price      # 自动执行 @price.deleter 修饰的 price 方法
复制代码
 

注:经典类中的属性只有一种访问方式,其对应被 @property 修饰的方法
      新式类中的属性有三种访问方式,并分别对应了三个被@property、@方法名.setter、@方法名.deleter修饰的方法

由于新式类中具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除

复制代码
class Goods(object):

    def __init__(self):
        # 原价
        self.original_price = 100
        # 折扣
        self.discount = 0.8

    @property
    def price(self):
        # 实际价格 = 原价 * 折扣
        new_price = self.original_price * self.discount
        return new_price

    @price.setter
    def price(self, value):
        self.original_price = value

    @price.deltter
    def price(self, value):
        del self.original_price

obj = Goods()
obj.price         # 获取商品价格
obj.price = 200   # 修改商品原价del obj.price     # 删除商品原价
复制代码

静态字段方式,创建值为property对象的静态字段

当使用静态字段的方式创建属性时,经典类和新式类无区别

复制代码
class Foo:

    def get_bar(self):
        return 'wupeiqi'

    BAR = property(get_bar)

obj = Foo()
reuslt = obj.BAR        # 自动调用get_bar方法,并获取方法的返回值
print reuslt
复制代码

property的构造方法中有个四个参数

  • 第一个参数是方法名,调用 对象.属性 时自动触发执行方法
  • 第二个参数是方法名,调用 对象.属性 = XXX 时自动触发执行方法
  • 第三个参数是方法名,调用 del 对象.属性 时自动触发执行方法
  • 第四个参数是字符串,调用 对象.属性.__doc__ ,此参数是该属性的描述信息
class Foo:

    def get_bar(self):
        return 'wupeiqi'# *必须两个参数def set_bar(self, value): 
        return return 'set value' + value

    def del_bar(self):
        return 'wupeiqi'

    BAR = property(get_bar, set_bar, del_bar, 'description...')

obj = Foo()

obj.BAR              # 自动调用第一个参数中定义的方法:get_bar
obj.BAR = "alex"     # 自动调用第二个参数中定义的方法:set_bar方法,并将“alex”当作参数传入del Foo.BAR          # 自动调用第三个参数中定义的方法:del_bar方法
obj.BAE.__doc__      # 自动获取第四个参数中设置的值:description...
复制代码

 由于静态字段方式创建属性具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除

复制代码
class Goods(object):

    def __init__(self):
        # 原价
        self.original_price = 100
        # 折扣
        self.discount = 0.8

    def get_price(self):
        # 实际价格 = 原价 * 折扣
        new_price = self.original_price * self.discount
        return new_price

    def set_price(self, value):
        self.original_price = value

    def del_price(self, value):
        del self.original_price

    PRICE = property(get_price, set_price, del_price, '价格属性描述...')

obj = Goods()
obj.PRICE         # 获取商品价格
obj.PRICE = 200   # 修改商品原价del obj.PRICE     # 删除商品原价
复制代码

 注意:Python WEB框架 Django 的视图中 request.POST 就是使用的静态字段的方式创建的属性

复制代码
class WSGIRequest(http.HttpRequest):
    def __init__(self, environ):
        script_name = get_script_name(environ)
        path_info = get_path_info(environ)
        if not path_info:
            # Sometimes PATH_INFO exists, but is empty (e.g. accessing# the SCRIPT_NAME URL without a trailing slash). We really need to# operate as if they'd requested '/'. Not amazingly nice to force# the path like this, but should be harmless.
            path_info = '/'
        self.environ = environ
        self.path_info = path_info
        self.path = '%s/%s' % (script_name.rstrip('/'), path_info.lstrip('/'))
        self.META = environ
        self.META['PATH_INFO'] = path_info
        self.META['SCRIPT_NAME'] = script_name
        self.method = environ['REQUEST_METHOD'].upper()
        _, content_params = cgi.parse_header(environ.get('CONTENT_TYPE', ''))
        if 'charset' in content_params:
            try:
                codecs.lookup(content_params['charset'])
            except LookupError:
                passelse:
                self.encoding = content_params['charset']
        self._post_parse_error = False
        try:
            content_length = int(environ.get('CONTENT_LENGTH'))
        except (ValueError, TypeError):
            content_length = 0
        self._stream = LimitedStream(self.environ['wsgi.input'], content_length)
        self._read_started = False
        self.resolver_match = None

    def _get_scheme(self):
        return self.environ.get('wsgi.url_scheme')

    def _get_request(self):
        warnings.warn('`request.REQUEST` is deprecated, use `request.GET` or ''`request.POST` instead.', RemovedInDjango19Warning, 2)
        if not hasattr(self, '_request'):
            self._request = datastructures.MergeDict(self.POST, self.GET)
        return self._request

    @cached_property
    def GET(self):
        # The WSGI spec says 'QUERY_STRING' may be absent.
        raw_query_string = get_bytes_from_wsgi(self.environ, 'QUERY_STRING', '')
        return http.QueryDict(raw_query_string, encoding=self._encoding)
    
    # ############### 看这里看这里  ###############def _get_post(self):
        if not hasattr(self, '_post'):
            self._load_post_and_files()
        return self._post

    # ############### 看这里看这里  ###############def _set_post(self, post):
        self._post = post

    @cached_property
    def COOKIES(self):
        raw_cookie = get_str_from_wsgi(self.environ, 'HTTP_COOKIE', '')
        return http.parse_cookie(raw_cookie)

    def _get_files(self):
        if not hasattr(self, '_files'):
            self._load_post_and_files()
        return self._files

    # ############### 看这里看这里  ###############
    POST = property(_get_post, _set_post)
    
    FILES = property(_get_files)
    REQUEST = property(_get_request)

所以,定义属性共有两种方式,分别是【装饰器】和【静态字段】,而【装饰器】方式针对经典类和新式类又有所不同。

类成员的修饰符

类的所有成员在上一步骤中已经做了详细的介绍,对于每一个类的成员而言都有两种形式:

  • 公有成员,在任何地方都能访问
  • 私有成员,只有在类的内部才能方法

私有成员和公有成员的定义不同私有成员命名时,前两个字符是下划线。(特殊成员除外,例如:__init__、__call__、__dict__等)

1
2
3
4
5
class C:
 
    def __init__(self):
        self.name = '公有字段'
        self.__foo = "私有字段"

私有成员和公有成员的访问限制不同

静态字段

  • 公有静态字段:类可以访问;类内部可以访问;派生类中可以访问
  • 私有静态字段:仅类内部可以访问;

复制代码
class C:

    name = "公有静态字段"def func(self):
        print C.name

class D(C):

    def show(self):
        print C.name


C.name         # 类访问
obj = C()
obj.func()     # 类内部可以访问
obj_son = D()
obj_son.show() # 派生类中可以访问
复制代码
复制代码
class C:

    __name = "公有静态字段"def func(self):
        print C.__nameclass D(C):

    def show(self):
        print C.__name


C.__name       # 类访问            ==> 错误
obj = C()
obj.func()     # 类内部可以访问     ==> 正确
obj_son = D()
obj_son.show() # 派生类中可以访问   ==> 错误
复制代码

普通字段

  • 公有普通字段:对象可以访问;类内部可以访问;派生类中可以访问
  • 私有普通字段:仅类内部可以访问;

ps:如果想要强制访问私有字段,可以通过 【对象._类名__私有字段明 】访问(如:obj._C__foo),不建议强制访问私有成员。

复制代码
class C:
    
    def __init__(self):
        self.foo = "公有字段"def func(self):
        print self.foo  # 类内部访问class D(C):
    
    def show(self):
        print self.foo # 派生类中访问

obj = C()

obj.foo     # 通过对象访问
obj.func()  # 类内部访问
obj_son = D();
obj_son.show()  # 派生类中访问
复制代码
复制代码
class C:
    
    def __init__(self):
        self.__foo = "私有字段"def func(self):
        print self.foo  # 类内部访问class D(C):
    
    def show(self):
        print self.foo # 派生类中访问

obj = C()

obj.__foo     # 通过对象访问    ==> 错误
obj.func()  # 类内部访问        ==> 正确
obj_son = D();
obj_son.show()  # 派生类中访问  ==> 错误
复制代码

方法、属性的访问于上述方式相似,即:私有成员只能在类内部使用

ps:非要访问私有属性的话,可以通过 对象._类__属性名


类的特殊成员

上文介绍了Python的类成员以及成员修饰符,从而了解到类中有字段、方法和属性三大类成员,并且成员名前如果有两个下划线,则表示该成员是私有成员,私有成员只能由类内部调用。无论人或事物往往都有不按套路出牌的情况,Python的类成员也是如此,存在着一些具有特殊含义的成员,详情如下:

1. __doc__

  表示类的描述信息

复制代码
class Foo:
    """ 描述类信息,这是用于看片的神奇 """def func(self):
        passprint Foo.__doc__#输出:类的描述信息
复制代码

2. __module__ 和  __class__ 

  __module__ 表示当前操作的对象在那个模块

  __class__     表示当前操作的对象的类是什么

复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-class C:

    def __init__(self):
        self.name = 'wupeiqi'
复制代码
from lib.aa import C

obj = C()
print obj.__module__  # 输出 lib.aa,即:输出模块print obj.__class__      # 输出 lib.aa.C,即:输出类

3. __init__

  构造方法,通过类创建对象时,自动触发执行。

复制代码
class Foo:

    def __init__(self, name):
        self.name = name
        self.age = 18


obj = Foo('wupeiqi') # 自动执行类中的 __init__ 方法
复制代码

4. __del__

  析构方法,当对象在内存中被释放时,自动触发执行。

注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构函数的调用是由解释器在进行垃圾回收时自动触发执行的。

class Foo:

    def __del__(self):
        pass

5. __call__

  对象后面加括号,触发执行。

注:构造方法的执行是由创建对象触发的,即:对象 = 类名() ;而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()

复制代码
class Foo:

    def __init__(self):
        passdef __call__(self, *args, **kwargs):

        print '__call__'


obj = Foo() # 执行 __init__
obj()       # 执行 __call__
复制代码

6. __dict__

  类或对象中的所有成员

上文中我们知道:类的普通字段属于对象;类中的静态字段和方法等属于类,即:

复制代码
class Province:

    country = 'China'def __init__(self, name, count):
        self.name = name
        self.count = count

    def func(self, *args, **kwargs):
        print 'func'# 获取类的成员,即:静态字段、方法、print Province.__dict__# 输出:{'country': 'China', '__module__': '__main__', 'func': <function func at 0x10be30f50>, '__init__': <function __init__ at 0x10be30ed8>, '__doc__': None}
obj1 = Province('HeBei',10000)
print obj1.__dict__# 获取 对象obj1 的成员
# 输出:{'count': 10000, 'name': 'HeBei'}
obj2 = Province('HeNan', 3888)
print obj2.__dict__# 获取 对象obj1 的成员
# 输出:{'count': 3888, 'name': 'HeNan'}
复制代码

 7. __str__

  如果一个类中定义了__str__方法,那么在打印 对象 时,默认输出该方法的返回值。

复制代码
class Foo:

    def __str__(self):
        return 'wupeiqi'


obj = Foo()
print obj
# 输出:wupeiqi
复制代码

8、__getitem__、__setitem__、__delitem__

用于索引操作,如字典。以上分别表示获取、设置、删除数据

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
class Foo(object):
 
    def __getitem__(self, key):
        print '__getitem__',key
 
    def __setitem__(self, key, value):
        print '__setitem__',key,value
 
    def __delitem__(self, key):
        print '__delitem__',key
 
 
obj = Foo()
 
result = obj['k1']      # 自动触发执行 __getitem__
obj['k2'= 'wupeiqi'   # 自动触发执行 __setitem__
del obj['k1']           # 自动触发执行 __delitem__

9、__getslice__、__setslice__、__delslice__

 该三个方法用于分片操作,如:列表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
class Foo(object):
 
    def __getslice__(self, i, j):
        print '__getslice__',i,j
 
    def __setslice__(self, i, j, sequence):
        print '__setslice__',i,j
 
    def __delslice__(self, i, j):
        print '__delslice__',i,j
 
obj = Foo()
 
obj[-1:1]                   # 自动触发执行 __getslice__
obj[0:1= [11,22,33,44]    # 自动触发执行 __setslice__
del obj[0:2]                # 自动触发执行 __delslice__

10. __iter__ 

用于迭代器,之所以列表、字典、元组可以进行for循环,是因为类型内部定义了 __iter__ 

复制代码
class Foo(object):
    pass


obj = Foo()

for i in obj:
    print i
    
# 报错:TypeError: 'Foo' object is not iterable
复制代码
复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-class Foo(object):
    
    def __iter__(self):
        pass

obj = Foo()

for i in obj:
    print i

# 报错:TypeError: iter() returned non-iterator of type 'NoneType'
复制代码
复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-class Foo(object):

    def __init__(self, sq):
        self.sq = sq

    def __iter__(self):
        return iter(self.sq)

obj = Foo([11,22,33,44])

for i in obj:
    print i
复制代码

以上步骤可以看出,for循环迭代的其实是  iter([11,22,33,44]) ,所以执行流程可以变更为:

1
2
3
4
5
6
7
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
obj = iter([11,22,33,44])
 
for in obj:
    print i
复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-
obj = iter([11,22,33,44])

while True:
    val = obj.next()
    print val
复制代码

11. __new__ 和 __metaclass__

阅读以下代码:

1
2
3
4
5
6
class Foo(object):
 
    def __init__(self):
        pass
 
obj = Foo()   # obj是通过Foo类实例化的对象

上述代码中,obj 是通过 Foo 类实例化的对象,其实,不仅 obj 是一个对象,Foo类本身也是一个对象,因为在Python中一切事物都是对象

如果按照一切事物都是对象的理论:obj对象是通过执行Foo类的构造方法创建,那么Foo类对象应该也是通过执行某个类的 构造方法 创建。

1
2
print type(obj) # 输出:<class '__main__.Foo'>     表示,obj 对象由Foo类创建
print type(Foo) # 输出:<type 'type'>              表示,Foo类对象由 type 类创建

所以,obj对象是Foo类的一个实例Foo类对象是 type 类的一个实例,即:Foo类对象 是通过type类的构造方法创建。

那么,创建类就可以有两种方式:

a). 普通方式

1
2
3
4
class Foo(object):
 
    def func(self):
        print 'hello wupeiqi'

b).特殊方式(type类的构造函数)

1
2
3
4
5
6
7
def func(self):
    print 'hello wupeiqi'
 
Foo = type('Foo',(object,), {'func': func})
#type第一个参数:类名
#type第二个参数:当前类的基类
#type第三个参数:类的成员

==》 类 是由 type 类实例化产生

那么问题来了,类默认是由 type 类实例化产生,type类中如何实现的创建类?类又是如何创建对象?

答:类中有一个属性 __metaclass__,其用来表示该类由 谁 来实例化创建,所以,我们可以为 __metaclass__ 设置一个type类的派生类,从而查看 类 创建的过程。


class MyType(type):

    def __init__(self, what, bases=None, dict=None):
        super(MyType, self).__init__(what, bases, dict)

    def __call__(self, *args, **kwargs):
        obj = self.__new__(self, *args, **kwargs)

        self.__init__(obj)

class Foo(object):

    __metaclass__ = MyType

    def __init__(self, name):
        self.name = name

    def __new__(cls, *args, **kwargs):
        return object.__new__(cls, *args, **kwargs)

# 第一阶段:解释器从上到下执行代码创建Foo类
# 第二阶段:通过Foo类创建obj对象
obj = Foo()
  1. Socket语法及相关
  2. SocketServer实现多并发 

 

 

 

Socket语法及相关

 

socket概念

socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递。 我们知道网络 通信 都 是基于 ip+port 方能定位到目标的具体机器上的具体服务,操作系统有0-65535个端口,每个端口都可以独立对外提供服务,如果 把一个公司比做一台电脑 ,那公司的总机号码就相当于ip地址, 每个员工的分机号就相当于端口, 你想找公司某个人,必须 先打电话到总机,然后再转分机 。

 

建立一个socket必须至少有2端, 一个服务端,一个客户端, 服务端被动等待并接收请求,客户端主动发起请求, 连接建立之后,双方可以互发数据。 

 

 

network socket is an endpoint of a connection across a computer network. Today, most communication between computers is based on the Internet Protocol; therefore most network sockets are Internet sockets. More precisely, a socket is a handle (abstract reference) that a local program can pass to the networking application programming interface (API) to use the connection, for example "send this data on this socket". Sockets are internally often simply integers, which identify which connection to use.

For example, to send "Hello, world!" via TCP to port 80 of the host with address 1.2.3.4, one might get a socket, connect it to the remote host, send the string, then close the socket:

1
2
3
4
Socket socket = getSocket(type = "TCP")
connect(socket, address = "1.2.3.4", port = "80")
send(socket, "Hello, world!")
close(socket)

socket API is an application programming interface (API), usually provided by the operating system, that allows application programs to control and use network sockets. Internet socket APIs are usually based on the Berkeley sockets standard. In the Berkeley sockets standard, sockets are a form of file descriptor (a file handle), due to the Unix philosophy that "everything is a file", and the analogies between sockets and files: you can read, write, open, and close both. In practice the differences mean the analogy is strained, and one instead use different interfaces (send and receive) on a socket. In inter-process communication, each end will generally have its own socket, but these may use different APIs: they are abstracted by the network protocol.

socket address is the combination of an IP address and a port number, much like one end of a telephone connection is the combination of a phone number and a particular extension. Sockets need not have an address (for example for only sending data), but if a program binds a socket to an address, the socket can be used to receive data sent to that address. Based on this address, internet sockets deliver incoming data packets to the appropriate application process or thread.

Socket Families(地址簇)

socket.AF_UNIX unix本机进程间通信 

socket.AF_INET IPV4 

socket.AF_INET6  IPV6

These constants represent the address (and protocol) families, used for the first argument to socket(). If the AF_UNIX constant is not defined then this protocol is unsupported. More constants may be available depending on the system.

 

Socket Types

socket.SOCK_STREAM  #for tcp

socket.SOCK_DGRAM   #for udp 

socket.SOCK_RAW     #原始套接字,普通的套接字无法处理ICMP、IGMP等网络报文,而SOCK_RAW可以;其次,SOCK_RAW也可以处理特殊的IPv4报文;此外,利用原始套接字,可以通过IP_HDRINCL套接字选项由用户构造IP头。

socket.SOCK_RDM  #是一种可靠的UDP形式,即保证交付数据报但不保证顺序。SOCK_RAM用来提供对原始协议的低级访问,在需要执行某些特殊操作时使用,如发送ICMP报文。SOCK_RAM通常仅限于高级用户或管理员运行的程序使用。

socket.SOCK_SEQPACKET #废弃了

These constants represent the socket types, used for the second argument to socket(). More constants may be available depending on the system. (Only SOCK_STREAM and SOCK_DGRAM appear to be generally useful.)

  

Socket 方法

socket.socket(family=AF_INETtype=SOCK_STREAMproto=0fileno=None)

Create a new socket using the given address family, socket type and protocol number. The address family should be AF_INET (the default), AF_INET6AF_UNIXAF_CAN or AF_RDS. The socket type should beSOCK_STREAM (the default), SOCK_DGRAMSOCK_RAW or perhaps one of the other SOCK_ constants. The protocol number is usually zero and may be omitted or in the case where the address family is AF_CAN the protocol should be one of CAN_RAW or CAN_BCM. If fileno is specified, the other arguments are ignored, causing the socket with the specified file descriptor to return. Unlike socket.fromfd()fileno will return the same socket and not a duplicate. This may help close a detached socket using socket.close().

socket.socketpair([family[, type[, proto]]])

Build a pair of connected socket objects using the given address family, socket type, and protocol number. Address family, socket type, and protocol number are as for the socket() function above. The default family is AF_UNIX if defined on the platform; otherwise, the default is AF_INET.

socket.create_connection(address[, timeout[, source_address]])

Connect to a TCP service listening on the Internet address (a 2-tuple (host, port)), and return the socket object. This is a higher-level function than socket.connect(): if host is a non-numeric hostname, it will try to resolve it for both AF_INET and AF_INET6, and then try to connect to all possible addresses in turn until a connection succeeds. This makes it easy to write clients that are compatible to both IPv4 and IPv6.

Passing the optional timeout parameter will set the timeout on the socket instance before attempting to connect. If no timeout is supplied, the global default timeout setting returned by getdefaulttimeout() is used.

If supplied, source_address must be a 2-tuple (host, port) for the socket to bind to as its source address before connecting. If host or port are ‘’ or 0 respectively the OS default behavior will be used.

socket.getaddrinfo(hostportfamily=0type=0proto=0flags=0) #获取要连接的对端主机地址

sk.bind(address)

  s.bind(address) 将套接字绑定到地址。address地址的格式取决于地址族。在AF_INET下,以元组(host,port)的形式表示地址。

sk.listen(backlog)

  开始监听传入连接。backlog指定在拒绝连接之前,可以挂起的最大连接数量。

      backlog等于5,表示内核已经接到了连接请求,但服务器还没有调用accept进行处理的连接个数最大为5
      这个值不能无限大,因为要在内核中维护连接队列

sk.setblocking(bool)

  是否阻塞(默认True),如果设置False,那么accept和recv时一旦无数据,则报错。

sk.accept()

  接受连接并返回(conn,address),其中conn是新的套接字对象,可以用来接收和发送数据。address是连接客户端的地址。

  接收TCP 客户的连接(阻塞式)等待连接的到来

sk.connect(address)

  连接到address处的套接字。一般,address的格式为元组(hostname,port),如果连接出错,返回socket.error错误。

sk.connect_ex(address)

  同上,只不过会有返回值,连接成功时返回 0 ,连接失败时候返回编码,例如:10061

sk.close()

  关闭套接字

sk.recv(bufsize[,flag])

  接受套接字的数据。数据以字符串形式返回,bufsize指定最多可以接收的数量。flag提供有关消息的其他信息,通常可以忽略。

sk.recvfrom(bufsize[.flag])

  与recv()类似,但返回值是(data,address)。其中data是包含接收数据的字符串,address是发送数据的套接字地址。

sk.send(string[,flag])

  将string中的数据发送到连接的套接字。返回值是要发送的字节数量,该数量可能小于string的字节大小。即:可能未将指定内容全部发送。

sk.sendall(string[,flag])

  将string中的数据发送到连接的套接字,但在返回之前会尝试发送所有数据。成功返回None,失败则抛出异常。

      内部通过递归调用send,将所有内容发送出去。

sk.sendto(string[,flag],address)

  将数据发送到套接字,address是形式为(ipaddr,port)的元组,指定远程地址。返回值是发送的字节数。该函数主要用于UDP协议。

sk.settimeout(timeout)

  设置套接字操作的超时期,timeout是一个浮点数,单位是秒。值为None表示没有超时期。一般,超时期应该在刚创建套接字时设置,因为它们可能用于连接的操作(如 client 连接最多等待5s )

sk.getpeername()

  返回连接套接字的远程地址。返回值通常是元组(ipaddr,port)。

sk.getsockname()

  返回套接字自己的地址。通常是一个元组(ipaddr,port)

sk.fileno()

  套接字的文件描述符

socket.sendfile(fileoffset=0count=None)

     发送文件 ,但目前多数情况下并无什么卵用。

 

 

SocketServer

The socketserver module simplifies the task of writing network servers.

There are four basic concrete server classes:

class socketserver.TCPServer(server_addressRequestHandlerClassbind_and_activate=True)

This uses the Internet TCP protocol, which provides for continuous streams of data between the client and server. If bind_and_activate is true, the constructor automatically attempts to invoke server_bind() andserver_activate(). The other parameters are passed to the BaseServer base class.

class socketserver.UDPServer(server_addressRequestHandlerClassbind_and_activate=True)

This uses datagrams, which are discrete packets of information that may arrive out of order or be lost while in transit. The parameters are the same as for TCPServer.

class socketserver.UnixStreamServer(server_addressRequestHandlerClassbind_and_activate=True)
class socketserver.UnixDatagramServer(server_addressRequestHandlerClass,bind_and_activate=True)

These more infrequently used classes are similar to the TCP and UDP classes, but use Unix domain sockets; they’re not available on non-Unix platforms. The parameters are the same as for TCPServer.

These four classes process requests synchronously; each request must be completed before the next request can be started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation, or because it returns a lot of data which the client is slow to process. The solution is to create a separate process or thread to handle each request; the ForkingMixIn and ThreadingMixIn mix-in classes can be used to support asynchronous behaviour.

There are five classes in an inheritance diagram, four of which represent synchronous servers of four types:

+------------+
| BaseServer |
+------------+
      |
      v
+-----------+        +------------------+
| TCPServer |------->| UnixStreamServer |
+-----------+        +------------------+
      |
      v
+-----------+        +--------------------+
| UDPServer |------->| UnixDatagramServer |
+-----------+        +--------------------+

Note that UnixDatagramServer derives from UDPServer, not from UnixStreamServer — the only difference between an IP and a Unix stream server is the address family, which is simply repeated in both Unix server classes.

class socketserver.ForkingMixIn
class socketserver.ThreadingMixIn

Forking and threading versions of each type of server can be created using these mix-in classes. For instance, ThreadingUDPServer is created as follows:

class ThreadingUDPServer(ThreadingMixIn, UDPServer):
    pass

The mix-in class comes first, since it overrides a method defined in UDPServer. Setting the various attributes also changes the behavior of the underlying server mechanism.

class socketserver.ForkingTCPServer
class socketserver.ForkingUDPServer
class socketserver.ThreadingTCPServer
class socketserver.ThreadingUDPServer

These classes are pre-defined using the mix-in classes.

 

 

 

Request Handler Objects

class socketserver.BaseRequestHandler

This is the superclass of all request handler objects. It defines the interface, given below. A concrete request handler subclass must define a new handle() method, and can override any of the other methods. A new instance of the subclass is created for each request.

setup()

Called before the handle() method to perform any initialization actions required. The default implementation does nothing.

handle()

This function must do all the work required to service a request. The default implementation does nothing. Several instance attributes are available to it; the request is available as self.request; the client address as self.client_address; and the server instance as self.server, in case it needs access to per-server information.

The type of self.request is different for datagram or stream services. For stream services,self.request is a socket object; for datagram services, self.request is a pair of string and socket.

finish()

Called after the handle() method to perform any clean-up actions required. The default implementation does nothing. If setup() raises an exception, this function will not be called.

 

 

 

socketserver.TCPServer Example

server side

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import socketserver
 
class MyTCPHandler(socketserver.BaseRequestHandler):
    """
    The request handler class for our server.
 
    It is instantiated once per connection to the server, and must
    override the handle() method to implement communication to the
    client.
    """
 
    def handle(self):
        # self.request is the TCP socket connected to the client
        self.data = self.request.recv(1024).strip()
        print("{} wrote:".format(self.client_address[0]))
        print(self.data)
        # just send back the same data, but upper-cased
        self.request.sendall(self.data.upper())
 
if __name__ == "__main__":
    HOST, PORT = "localhost"9999
 
    # Create the server, binding to localhost on port 9999
    server = socketserver.TCPServer((HOST, PORT), MyTCPHandler)
 
    # Activate the server; this will keep running until you
    # interrupt the program with Ctrl-C
    server.serve_forever()

client side

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import socket
import sys
 
HOST, PORT = "localhost"9999
data = " ".join(sys.argv[1:])
 
# Create a socket (SOCK_STREAM means a TCP socket)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 
try:
    # Connect to server and send data
    sock.connect((HOST, PORT))
    sock.sendall(bytes(data + "\n""utf-8"))
 
    # Receive data from the server and shut down
    received = str(sock.recv(1024), "utf-8")
finally:
    sock.close()
 
print("Sent:     {}".format(data))
print("Received: {}".format(received))

上面这个例子你会发现,依然不能实现多并发,哈哈,在server端做一下更改就可以了

1
server = socketserver.TCPServer((HOST, PORT), MyTCPHandler)

改成

 

1
server = socketserver.ThreadingTCPServer((HOST, PORT), MyTCPHandler)











posted @ 2016-12-01 23:50  Anonymous-develop  阅读(484)  评论(0编辑  收藏  举报

python自动化开发&研究 - 创建于 2016年1月10日

这是一位运维自动化开发工程师的个人站,内容主要是网站开发方面的技术文章,大部分来自学习或工作,部分来源于网络,希望对大家有所帮助。

致力于自动化应用开发&研究工作,专注运维与前端开发,关注互联网前沿技术与趋势。


廖雪峰的博客 | 徐亮的博客 | 刘耀的博客 | python基础课程 | 我的svn | 我的个人导航首页