用Python玩转词云

第一步:引入相关的库包:

#coding:utf-8
__author__ = 'Administrator'
import jieba    #分词包
import numpy    #numpy计算包
import codecs   #codecs提供的open方法来指定打开的文件的语言编码,它会在读取的时候自动转换为内部unicode 
import pandas   
import matplotlib.pyplot as plt
%matplotlib inline

from wordcloud import WordCloud#词云包

第二部:导入分好词的西游记txt文件:

file=codecs.open(u"西游记.txt",'r','utf-8')
content=file.read()
file.close()
jieba.load_userdict(u"红楼梦分词.txt")
segment=[]
segs=jieba.cut(content)
for seg in segs:
    if len(seg)>1 and seg!='\r\n':
        segment.append(seg)

第三部:统计分词结果并去掉停用词:

segmentDF=pandas.DataFrame({'segment':segment})
segmentDF.head()
stopwords=pandas.read_csv("stopwords.txt",index_col=False,quoting=3,sep="\t",names=['stopword'])#quoting=3全不引用
stopwords.head()
segmentDF=segmentDF[~segmentDF.segment.isin(stopwords.stopword)]
wyStopWords=pandas.Series(['','','','','','','','','','','','','','','','',''
                           ,'','','','',
                           '','','','','','','','','','',
                           '','','','','','','','便','','','','','','','','','','" "'])
segmentDF=segmentDF[~segmentDF.segment.isin(wyStopWords)]

第四部:统计词频:

segStat=segmentDF.groupby(by=['segment'])['segment'].agg({"计数":numpy.size})
segStat=segStat.reset_index().sort(columns="计数",ascending=False)
segStat

 

第五步:显示词云

wordcloud=WordCloud(font_path="simhei.ttf",background_color="black")
wordcloud=wordcloud.fit_words(segStat.head(1000).itertuples(index=False))
plt.imshow(wordcloud)

 

 

第六步:自定义词云形状

from scipy.misc import imread
import matplotlib.pyplot as plt
from wordcloud import WordCloud,ImageColorGenerator
bimg=imread('3.jPG')
wordcloud=WordCloud(background_color="white",mask=bimg,font_path='C:\Windows\Fonts\simhei.ttf')
wordcloud=wordcloud.fit_words(segStat.head(39769).itertuples(index=False))
bimgColors=ImageColorGenerator(bimg)
plt.axis("off")
plt.imshow(wordcloud.recolor(color_func=bimgColors))
plt.show()

 

 

posted on 2016-12-27 11:39  金秀  阅读(607)  评论(0编辑  收藏  举报

导航