第三章 广义线性模型(GLM)

广义线性模型

前面我们举了回归和分类得到例子。在回归的例子中,$y \mid x;\theta \sim  N(u,\sigma ^{2})$,在分类例子中,$y\mid x;\theta \sim  Bbernoulli(\phi)$

广义线性模型是基于指数函数族的,指数函数族原型为:

$p(y;\eta) = b(y)exp(\eta^{T}T(y)-a(\eta))$

$\eta$为自然参数,$T(y)$为充分统计量,一般情况下$T(y)=y$。选择固定的T,a,b定义一个分布,参数为$\eta$。

对于伯努利分布(均值为$\phi$),有:

$p(y=1,\phi)=\phi;p(y=0;\phi)=1-\phi$

$p(y;\phi) = \phi^{y}(1-\phi)^{1-y}$

$p(y;\phi) = exp(ylog\phi +(1-y)log(1-\phi))$

$p(y;\phi) = exp((log(\frac{\phi}{1-\phi}))y+log(1-\phi))$

因此有:

$T(y) = y$

$a(\eta) = -log(1-\phi)$

$a(\eta) = log(1+e^{\eta})$

$b(y)=1$

 对于高斯分布,有:

$p(y;u) = \frac{1}{\sqrt{2\pi}}exp(-\frac{1}{2}(y-u)^{2})$

$p(y;u) = \frac{1}{\sqrt{2\pi}}exp(-\frac{1}{2}y^{2})\cdot exp(uy=\frac{1}{2}u^{2})$

因此有:

$\eta = u$

$T(y) = y $

$a(\eta) = \frac{u^{2}}{2} = \frac{\eta^{2}}{2}$

$b(y) = (\frac{1}{\sqrt{2\pi}})exp(-\frac{1}{2}y^{2})$

构造GLM 

1. $y \mid x;\theta \sim  ExponentialFamily(\eta)$

2. 给定x,我们的目标是预测T(y),大部分情况下T(y)=y,因此我们可以选择预测输出h(x),$h(x) =E\left [ y \mid x \right ]$

3. 自然参数$\eta$和输入x是线性相关的,$\eta = \theta^{T}x$

普通最小二乘法

普通最小二乘法是GLM模型的一种特例:y是连续的,给定x后的y的条件分布是高斯分布$N(u,\sigma^{2})$。因此令指数函数族的分布为高斯分布。正如前面,高斯分布U作为指数函数族时,$u=\eta$。因此有:

$h_{\theta}(x) = E\left [ y \mid x ; \theta \right ] = u = \eta =\theta^{T}x$

逻辑回归

逻辑回归中y只取0和1,因此使用伯努利分布作为指数函数族的分布,因此$\phi = \frac{1}{1+e^{-\eta}}$。进一步,由$y \mid x;\theta \sim Bernoulli(\phi)$,则$E\left [ y \mid x;\theta \right ] = \phi $,得到:

$h_{\theta}(x) =  E\left [ y \mid x ; \theta \right ] $

$h_{\theta}(x) = \phi $

$h_{\theta}(x) = \frac{1}{1+e^{-\eta}}$

$h_{\theta}(x) = \frac{1}{1+e^{-\theta^{T}x}}$

softmax回归

在逻辑回归中,y离散取值只有两个,现在考虑当y取多个值的情况,$y\in {1,2,...,k}$。

为了参数化具有k个可能的输出的多项式,我们可以使用k个参数$\phi_{1},...,\phi_{2}$来表示每个输出的概率。但是这些参数是冗余的,因为这k个参数之和为1。所以我们只需要参数化k-1个变量:$\phi_{i} = p(y=i;\phi) ~~ p(y=k;\phi) = 1-\sum_{i=1}^{k-1}\phi_{i}$,为了方便,我们令$\phi_{k}= 1-\sum_{i=1}^{k-1}\phi_{i}$,但记住它并不是一个参数,而是由其它k-1个参数值决定。

 

为了使多项式为指数函数族分布,定义以下$T(y) \in R^{k-1}$:

$  T(1) =\begin{bmatrix} 1\\ 0\\ 0\\ \vdots \\0 \end{bmatrix}$

$  T(2) =\begin{bmatrix} 0\\ 1\\ 0\\ \vdots \\0 \end{bmatrix}$

$  T(k-1) =\begin{bmatrix} 0\\ 0\\ 0\\ \vdots \\1 \end{bmatrix}$

$  T(k) =\begin{bmatrix} 1\\ 0\\ 0\\ \vdots \\0 \end{bmatrix}$

跟前面不同的是,这里T(y)并不等于y,T(y) 在这里是一个k-1维向量,而不是一个实数。令$(T(y))_{i}$表示$T(y)$的第i个元素。

 

接着定义一个函数$1{\cdot}$,当参数为true时,函数值为1,反之为零。例如 1{2=3}=0.

因此,$(T(y))_{i}=1{y=i}$,进一步我们有$E[(T(y))_{i}]=P(y=i)=\phi_{i}$。

 

接下来说明该多项式也属于指数函数族:

$p(y;\phi) = \phi_{1}^{1\{y=1\}} \phi_{2}^{1\{y=2\}} \cdots \phi_{k}^{1\{y=k\}}$

$p(y;\phi) = \phi_{1}^{1\{y=1\}} \phi_{2}^{1\{y=2\}} \cdots \phi_{k}^{1-\sum_{i=1}^{k-1}(T(y))_{i}}$

$p(y;\phi) = \phi_{1}^{(T(y))_{1}} \phi_{2}^{(T(y))_{2}} \cdots \phi_{k}^{1-\sum_{i=1}^{k-1}(T(y))_{i}}$

$p(y;\phi) = exp((T(y))_{1}log(\phi_{1}) + (T(y))_{2}log(\phi_{2}) + \cdots + (1-\sum_{i=1}^{k-1}(T(y))_{i})log(\phi_{k}))$

$p(y;\phi) =exp((T(y))_{1}log(\phi_{1}/\phi_{k})+  (T(y))_{2}log(\phi_{2}/\phi_{k})+\cdots+(T(y))_{k-1}log(\phi_{k-1}/\phi_{k})+log(\phi_{k}))$

$p(y;\phi) = b(y)exp( \eta^{T}T(y)-a(\eta))$

其中:

$  \eta =\begin{bmatrix} log(\phi_{1}/\phi_{k})\\ log(\phi_{2}/\phi_{k})\\ \vdots \\log(\phi_{k-1}/\phi_{k}) \end{bmatrix}$

$a(\eta)=-log(\eta_{k})$

$b(y)=1$

因此有以下函数关系式:

$\eta_{i}= \frac{\phi_{i}}{\phi_{k}}$

为了方便,我们定义:

$\eta_{k} = 0$

因此我们得到以下关系式:

$e^{\eta_{i}}= \frac{\phi_{i}}{\phi_{k}}$

$\phi_{k}e^{\eta_{i}} = \phi_{i}$

$\phi_{k}\sum_{i=1}{k}e^{\eta_{i}}=1$

因此我们得到以下响应函数:

$\phi_{i}= \frac{e^{\eta_{i}}}{\sum_{j=1}^{k}e^{\eta_{j}}}$

这种$\eta$到$\phi$的映射函数称为softmax函数。

令$\eta_{i}=\theta_{i}^{T}x ~~(i=1,2,...,k-1),\theta_{1},...,\theta_{k-1}\in R^{n+1}$

因此有以下条件分布:

$p(y=1 \mid x;\theta) = \phi_{i}$

$p(y=1 \mid x;\theta) = \frac{e^{\eta_{i}}}{\sum_{j=1}^{k}e^{\eta_{j}}}$

$p(y=1 \mid x;\theta) = \frac{e^{\theta_{i}^{T}x}}{\sum_{j=1}^{k}e^{\theta_{j}^{T}x}}$

损失函数:

 

最大似然估计:

 

posted @ 2016-08-03 21:16  且听风吟-wuchao  阅读(729)  评论(0编辑  收藏  举报