Convert Sorted Array to Binary Search Tree

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

首先我是要AVL树的创建过程进行操作,不过提交之后出现超时,但还是让我将AVL树的创建过程实现了一遍,记录一下:

C++实现代码:

#include<iostream>
#include<new>
#include<vector>
#include<cmath>
using namespace std;

//Definition for binary tree
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

class Solution
{
public:
    TreeNode *sortedArrayToBST(vector<int> &num)
    {
        if(num.empty())
            return NULL;
        TreeNode *root=NULL;
        int i;
        for(i=0; i<(int)num.size(); i++)
            insert(root,num[i]);
        return root;
    }
    void insert(TreeNode *&root,int key)
    {int lhigh,rhigh;
        if(root==NULL)
        {
            root=new TreeNode(key);
            if(root==NULL)
                return;
        }
        else if(key<root->val)
        {
            insert(root->left,key);
            lhigh=maxDepth(root->left);
            rhigh=maxDepth(root->right);
            if(abs(lhigh-rhigh)>1)
            {
                if(key<root->left->val)
                    SingleRotateWithLeft(root);
                else
                    DoubleRotateWithLeft(root);
            }
        }
        else
        {
            insert(root->right,key);
            lhigh=maxDepth(root->left);
            rhigh=maxDepth(root->right);
            if(abs(lhigh-rhigh)>1)
            {
                if(key>root->right->val)
                    SingleRotateWithRight(root);
                else
                    DoubleRotateWithLeft(root);
            }
        }
    }
    int maxDepth(TreeNode *root)
    {
        if(root)
        {
            if(root->left==NULL&&root->right==NULL)
                return 1;
            int leftDepth=maxDepth(root->left);
            int rightDepth=maxDepth(root->right);
            return leftDepth>= rightDepth ?(leftDepth+1):(rightDepth+1);
        }
        return 0;
    }
    void SingleRotateWithLeft(TreeNode *&root)
    {
        TreeNode *l=root->left;
        root->left=l->right;
        l->right=root;
        root=l;
    }
    void SingleRotateWithRight(TreeNode *&root)
    {
        TreeNode *r=root->right;
        root->right=r->left;
        r->left=root;
        root=r;
    }
    void DoubleRotateWithLeft(TreeNode *&root)
    {
        SingleRotateWithRight(root->left);
        SingleRotateWithLeft(root);
    }
    void DoubleRotateWithRight(TreeNode *&root)
    {
        SingleRotateWithLeft(root->right);
        SingleRotateWithRight(root);
    }
    void inorder(TreeNode *root)
    {
        if(root)
        {
            inorder(root->left);
            cout<<root->val<<" ";
            inorder(root->right);
        }
    }
};

int main()
{
    Solution s;
    TreeNode *root=NULL;
    vector<int> vec={1,2,3,4,5,6,7,8,9,10};
    root=s.sortedArrayToBST(vec);
    s.inorder(root);
    cout<<endl;
    cout<<s.maxDepth(root)<<endl;
}

运行结果:

 

提交的代码:

#include<iostream>
#include<new>
#include<vector>
#include<cmath>
using namespace std;

//Definition for binary tree
struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

class Solution
{
public:
    TreeNode *sortedArrayToBST(vector<int> &num)
    {
        if(num.empty())
            return NULL;//递归的退出条件,一定要写哦
        TreeNode *root=NULL;
        int left=0;
        int right=num.size()-1;
        int mid=(left+right)/2;
        root=new TreeNode(num[mid]);
        vector<int> l(mid);
        vector<int> r(right-mid);
        int i;
        for(i=0;i<mid;i++)
            l[i]=num[i];
        for(i=mid+1;i<(int)num.size();i++)
            r[i-mid-1]=num[i];
        root->left=sortedArrayToBST(l);
        root->right=sortedArrayToBST(r);
        return root;
    }
    int maxDepth(TreeNode *root)
    {
        if(root)
        {
            if(root->left==NULL&&root->right==NULL)
                return 1;
            int leftDepth=maxDepth(root->left);
            int rightDepth=maxDepth(root->right);
            return leftDepth>= rightDepth ?(leftDepth+1):(rightDepth+1);
        }
        return 0;
    }
    TreeNode* SingleRotateWithLeft(TreeNode *&root)
    {
        TreeNode *l=root->left;
        root->left=l->right;
        l->right=root;
        return l;
    }
    TreeNode* SingleRotateWithRight(TreeNode *&root)
    {
        TreeNode *r=root->right;
        root->right=r->left;
        r->left=root;
        return r;
    }
    TreeNode* DoubleRotateWithLeft(TreeNode *&root)
    {
        SingleRotateWithRight(root->left);
        return SingleRotateWithLeft(root);
    }
    TreeNode* DoubleRotateWithRight(TreeNode *&root)
    {
        SingleRotateWithLeft(root->right);
        return SingleRotateWithRight(root);
    }
    void inorder(TreeNode *root)
    {
        if(root)
        {
            inorder(root->left);
            cout<<root->val<<" ";
            inorder(root->right);
        }
    }
};

int main()
{
    Solution s;
    TreeNode *root=NULL;
    vector<int> vec={1,2,3,4,5,6,7,8,9,10};
    root=s.sortedArrayToBST(vec);
    s.inorder(root);
    cout<<endl;
    cout<<s.maxDepth(root)<<endl;
}

 

posted @ 2014-11-21 22:25  Jessica程序猿  阅读(229)  评论(0编辑  收藏  举报