Triangle
Dynamic Programming
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
C++代码实现:
#include<iostream> #include<vector> #include<climits> #include<cmath> using namespace std; class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { if(triangle.empty()) return 0; if(triangle.size()==1) return triangle[0][0]; int i,j; for(i=(int)triangle.size()-2;i>=0;i--) { for(j=0;j<(int)triangle[i].size();j++) { triangle[i][j]+=min(triangle[i+1][j],triangle[i+1][j+1]); } } return triangle[0][0]; } }; int main() { Solution s; vector<vector<int> > triangle={{-1},{2,3},{1,-1,-3}}; cout<<s.minimumTotal(triangle)<<endl; }