一、索引的介绍
数据库中专门用于帮助用户快速查找数据的一种数据结构。类似于字典中的目录,查找字典内容时可以根据目录查找到数据的存放位置吗,然后直接获取。
二 、索引的作用
三、常见的几种索引:
- 普通索引
- 唯一索引
- 主键索引
- 联合索引(多列)
- 联合主键索引
- 联合唯一索引
- 联合普通索引
无索引: 从前往后一条一条查询
有索引:创建索引的本质,就是创建额外的文件(某种格式存储,查询的时候,先去格外的文件找,定好位置,然后再去原始表中直接查询。但是创建索引越多,会对硬盘也是有损耗。
建立索引的目的:
a.额外的文件保存特殊的数据结构
b.查询快,但是插入更新删除依然慢
c.创建索引之后,必须命中索引才能有效
无索引和有索引的区别以及建立索引的目的
有索引和无索引的区别
hash索引和BTree索引
(1)hash类型的索引:查询单条快,范围查询慢
(2)btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它)
索引的种类
3.1 普通索引
作用:仅有一个加速查找
create table userinfo(
nid int not null auto_increment primary key,
name varchar(32) not null,
email varchar(64) not null,
index ix_name(name)
);
创建表+普通索引
创建表+普通索引
create index 索引的名字 on 表名(列名)
普通索引
删除索引
查看索引
3.2 唯一索引
唯一索引有两个功能:加速查找和唯一约束(可含null)
create table userinfo(
id int not null auto_increment primary key,
name varchar(32) not null,
email varchar(64) not null,
unique index ix_name(name)
)
or
create table userinfo(
id int not null auto_increment,
name varchar(32) not null,
email varchar(64) not null,
primary key(nid),
unique index ix_name(name)
)
创建表+主键索引
创建表+主键索引
alter table 表名 add primary key(列名);
主键索引
alter table 表名 drop primary key;
alter table 表名 modify 列名 int, drop primary key;
删除活动
3.4 组合索引
组合索引是将n个列组合成一个索引
其应用场景为:频繁的同时使用n列来进行查询,如:where name = 'alex' and email = 'alex@qq.com'。
create index 索引名 on 表名(列名1,列名2);
联合普通索引
四、索引名词
#覆盖索引:在索引文件中直接获取数据
例如:
select name from userinfo where name = 'alex50000';
#索引合并:把多个单列索引合并成使用
例如:
select * from userinfo where name = 'alex13131' and id = 13131;
六、正确使用索引的情况
数据库表中添加索引后确实会让查询速度起飞,但前提必须是正确的使用索引来查询,如果以错误的方式使用,则即使建立索引也会不奏效。
使用索引,我们必须知道:
(1)创建索引
(2)命中索引
(3)正确使用索引
准备:
#1. 准备表
create table userinfo(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);
#2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
declare i int default 1;
while(i<3000000)do
insert into userinfo values(i,concat('alex',i),'male',concat('egon',i,'@oldboy'));
set i=i+1;
end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号
#3. 查看存储过程
show create procedure auto_insert1\G
#4. 调用存储过程
call auto_insert1();
准备300w条数据
准备300w条数据
- like '%xx'
select * from userinfo where name like '%al';
- 使用函数
select * from userinfo where reverse(name) = 'alex333';
- or
select * from userinfo where id = 1 or email = 'alex122@oldbody';
特别的:当or条件中有未建立索引的列才失效,以下会走索引
select * from userinfo where id = 1 or name = 'alex1222';
select * from userinfo where id = 1 or email = 'alex122@oldbody' and name = 'alex112'
- 类型不一致
如果列是字符串类型,传入条件是必须用引号引起来,不然...
select * from userinfo where name = 999;
- !=
select count(*) from userinfo where name != 'alex'
特别的:如果是主键,则还是会走索引
select count(*) from userinfo where id != 123
- >
select * from userinfo where name > 'alex'
特别的:如果是主键或索引是整数类型,则还是会走索引
select * from userinfo where id > 123
select * from userinfo where num > 123
- order by
select email from userinfo order by name desc;
当根据索引排序时候,选择的映射如果不是索引,则不走索引
特别的:如果对主键排序,则还是走索引:
select * from userinfo order by nid desc;
- 组合索引最左前缀
如果组合索引为:(name,email)
name and email -- 使用索引
name -- 使用索引
email -- 不使用索引
什么是最左前缀呢?
最左前缀匹配:
create index ix_name_email on userinfo(name,email);
select * from userinfo where name = 'alex';
select * from userinfo where name = 'alex' and email='alex@oldBody';
select * from userinfo where email='alex@oldBody';
如果使用组合索引如上,name和email组合索引之后,查询
(1)name和email ---使用索引
(2)name ---使用索引
(3)email ---不适用索引
对于同时搜索n个条件时,组合索引的性能好于多个单列索引
******组合索引的性能>索引合并的性能*********
七、索引的注意事项
(1)避免使用select *
(2)count(1)或count(列) 代替count(*)
(3)创建表时尽量使用char代替varchar
(4)表的字段顺序固定长度的字段优先
(5)组合索引代替多个单列索引(经常使用多个条件查询时)
(6)尽量使用短索引 (create index ix_title on tb(title(16));特殊的数据类型 text类型)
(7)使用连接(join)来代替子查询
(8)连表时注意条件类型需一致
(9)索引散列(重复少)不适用于建索引,例如:性别不合适
八、执行计划
explain + 查询SQL - 用于显示SQL执行信息参数,根据参考信息可以进行SQL优化
mysql> explain select * from userinfo;
+----+-------------+----------+------+---------------+------+---------+------+---------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+----------+------+---------------+------+---------+------+---------+-------+
| 1 | SIMPLE | userinfo | ALL | NULL | NULL | NULL | NULL | 2973016 | NULL |
+----+-------------+----------+------+---------------+------+---------+------+---------+-------+
mysql> explain select * from (select id,name from userinfo where id <20) as A;
+----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 19 | NULL |
| 2 | DERIVED | userinfo | range | PRIMARY | PRIMARY | 4 | NULL | 19 | Using where |
+----+-------------+------------+-------+---------------+---------+---------+------+------+-------------+
rows in set (0.05 sec)
参数说明:
select_type:
查询类型
SIMPLE 简单查询
PRIMARY 最外层查询
SUBQUERY 映射为子查询
DERIVED 子查询
UNION 联合
UNION RESULT 使用联合的结果
table:
正在访问的表名
type:
查询时的访问方式,性能:all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
ALL 全表扫描,对于数据表从头到尾找一遍
select * from userinfo;
特别的:如果有limit限制,则找到之后就不在继续向下扫描
select * from userinfo where email = 'alex112@oldboy'
select * from userinfo where email = 'alex112@oldboy' limit 1;
虽然上述两个语句都会进行全表扫描,第二句使用了limit,则找到一个后就不再继续扫描。
INDEX : 全索引扫描,对索引从头到尾找一遍
select nid from userinfo;
RANGE: 对索引列进行范围查找
select * from userinfo where name < 'alex';
PS:
between and
in
> >= < <= 操作
注意:!= 和 > 符号
INDEX_MERGE: 合并索引,使用多个单列索引搜索
select * from userinfo where name = 'alex' or nid in (11,22,33);
REF: 根据索引查找一个或多个值
select * from userinfo where name = 'alex112';
EQ_REF: 连接时使用primary key 或 unique类型
select userinfo2.id,userinfo.name from userinfo2 left join tuserinfo on userinfo2.id = userinfo.id;
CONST:常量
表最多有一个匹配行,因为仅有一行,在这行的列值可被优化器剩余部分认为是常数,const表很快,因为它们只读取一次。
select id from userinfo where id = 2 ;
SYSTEM:系统
表仅有一行(=系统表)。这是const联接类型的一个特例。
select * from (select id from userinfo where id = 1) as A;
possible_keys:可能使用的索引
key:真实使用的
key_len: MySQL中使用索引字节长度
rows: mysql估计为了找到所需的行而要读取的行数 ------ 只是预估值
extra:
该列包含MySQL解决查询的详细信息
“Using index”
此值表示mysql将使用覆盖索引,以避免访问表。不要把覆盖索引和index访问类型弄混了。
“Using where”
这意味着mysql服务器将在存储引擎检索行后再进行过滤,许多where条件里涉及索引中的列,当(并且如果)它读取索引时,就能被存储引擎检验,因此不是所有带where子句的查询都会显示“Using where”。有时“Using where”的出现就是一个暗示:查询可受益于不同的索引。
“Using temporary”
这意味着mysql在对查询结果排序时会使用一个临时表。
“Using filesort”
这意味着mysql会对结果使用一个外部索引排序,而不是按索引次序从表里读取行。mysql有两种文件排序算法,这两种排序方式都可以在内存或者磁盘上完成,explain不会告诉你mysql将使用哪一种文件排序,也不会告诉你排序会在内存里还是磁盘上完成。
“Range checked for each record(index map: N)”
这个意味着没有好用的索引,新的索引将在联接的每一行上重新估算,N是显示在possible_keys列中索引的位图,并且是冗余的
九、慢日志记录
开启慢查询日志,可以让MySQL记录下查询超过指定时间的语句,通过定位分析性能的瓶颈,才能更好的优化数据库系统的性能。
(1) 进入MySql 查询是否开了慢查询
show variables like 'slow_query%';
参数解释:
slow_query_log 慢查询开启状态 OFF 未开启 ON 为开启
slow_query_log_file 慢查询日志存放的位置(这个目录需要MySQL的运行帐号的可写权限,一般设置为MySQL的数据存放目录)
(2)查看慢查询超时时间
show variables like 'long%';
ong_query_time 查询超过多少秒才记录 默认10秒
(3)开启慢日志(1)(是否开启慢查询日志,1表示开启,0表示关闭。)
set global slow_query_log=1;
(4)再次查看
show variables like '%slow_query_log%';
(5)开启慢日志(2):(推荐)
在my.cnf 文件中
找到[mysqld]下面添加:
slow_query_log =1
slow_query_log_file=C:\mysql-5.6.40-winx64\data\localhost-slow.log
long_query_time = 1
参数说明:
slow_query_log 慢查询开启状态 1 为开启
slow_query_log_file 慢查询日志存放的位置
long_query_time 查询超过多少秒才记录 默认10秒 修改为1秒
十、分页性能相关方案
先回顾一下,如何取当前表中的前10条记录,每十条取一次.......
第1页:
select * from userinfo limit 0,10;
第2页:
select * from userinfo limit 10,10;
第3页:
select * from userinfo limit 20,10;
第4页:
select * from userinfo limit 30,10;
......
第2000010页
select * from userinfo limit 2000000,10;
PS:会发现,越往后查询,需要的时间约长,是因为越往后查,全文扫描查询,会去数据表中扫描查询。
最优的解决方案
(1)只有上一页和下一页
做一个记录:记录当前页的最大id或最小id
下一页:
select * from userinfo where id>max_id limit 10;
上一页:
select * from userinfo where id<min_id order by id desc limit 10;
(2) 中间有页码的情况
select * from userinfo where id in(
select id from (select * from userinfo where id > pre_max_id limit (cur_max_id-pre_max_id)*10) as A order by A.id desc limit 10
);