[代码随想录]Day16-二叉树part05
1.[代码随想录]Day01-数组part012.[代码随想录]Day02-数组part023.[代码随想录]Day06-哈希表 part024.[代码随想录]Day05-哈希表 part015.[代码随想录]Day04-链表part026.[代码随想录]Day03-链表part017.[代码随想录]Day14-二叉树part038.[代码随想录]Day13-二叉树part029.[代码随想录]Day12-二叉树part0110.[代码随想录]Day11-栈与队列part0311.[代码随想录]Day10-栈与队列part0212.[代码随想录]Day09-栈与队列part0113.[代码随想录]Day08-字符串 part0214.[代码随想录]Day07-字符串 part0115.[代码随想录]Day30-贪心算法part0416.[代码随想录]Day29-贪心算法part0317.[代码随想录]Day28-贪心算法part0218.[代码随想录]Day27-贪心算法part0119.[代码随想录]Day26-回溯算法part0620.[代码随想录]Day25-回溯算法part0521.[代码随想录]Day24-回溯算法part0422.[代码随想录]Day23-回溯算法part0323.[代码随想录]Day22-回溯算法part0224.[代码随想录]Day21-回溯算法part0125.[代码随想录]Day20-二叉树part0926.[代码随想录]Day19-二叉树part0827.[代码随想录]Day18-二叉树part0728.[代码随想录]Day17-二叉树part06
29.[代码随想录]Day16-二叉树part05
30.[代码随想录]Day15-二叉树part0431.[代码随想录]Day52-单调栈part0332.[代码随想录]Day51-单调栈part0233.[代码随想录]Day50-单调栈part0134.[代码随想录]Day49-动态规划part1735.[代码随想录]Day48-动态规划part1636.[代码随想录]Day47-动态规划part1537.[代码随想录]Day46-动态规划part1438.[代码随想录]Day45-动态规划part1339.[代码随想录]Day44-动态规划part1240.[代码随想录]Day43-动态规划part1141.[代码随想录]Day42-动态规划part1042.[代码随想录]Day41-动态规划part0943.[代码随想录]Day40-动态规划part0844.[代码随想录]Day39-动态规划part0745.[代码随想录]Day38-动态规划part0646.[代码随想录]Day37-动态规划part0547.[代码随想录]Day36-动态规划part0448.[代码随想录]Day35-动态规划part0349.[代码随想录]Day34-动态规划part0250.[代码随想录]Day33-动态规划part0151.[代码随想录]Day32-贪心算法part0652.[代码随想录]Day31-贪心算法part05题目:513. 找树左下角的值
思路:
层序遍历是最好的选择了,先放右节点,再放左节点最后一个元素就是最左侧的节点。
说白了层序遍历就是广度优先搜索BFS。
代码:
func findBottomLeftValue(root *TreeNode) int {
node := root
q := []*TreeNode{root}
for len(q) > 0 {
node, q = q[0], q[1:]
if node.Right != nil {
q = append(q, node.Right) // 先放右节点
}
if node.Left != nil {
q = append(q, node.Left) // 再放左节点
}
}
return node.Val // 最后一个节点就是最左侧的节点
}
参考:
题目:112. 路径总和
思路:
当它是叶子节点的时候判断是不是相同,返回true 或者 false。
根节点是只要左右有一个true就是true。
代码1:
func calcHasPathSum(root *TreeNode,nowSum, targetSum int) bool {
if root.Left == nil && root.Right == nil {
if nowSum + root.Val == targetSum {
return true
}
return false
}
left, right := false, false
if root.Left != nil {
left = calcHasPathSum(root.Left, nowSum + root.Val, targetSum)
}
if root.Right != nil {
right = calcHasPathSum(root.Right, nowSum + root.Val, targetSum)
}
return left || right
}
代码2:
简化版
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func hasPathSum(root *TreeNode, sum int) bool {
if root == nil {
return false
}
if root.Left == nil && root.Right == nil {
return sum-root.Val == 0
}
return hasPathSum(root.Left, sum-root.Val) || hasPathSum(root.Right, sum-root.Val)
}
参考:
题目:106. 从中序与后序遍历序列构造二叉树
思路:
- 第一步:如果数组大小为零的话,说明是空节点了。
- 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。
- 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点
- 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)
- 第五步:切割后序数组,切成后序左数组和后序右数组
- 第六步:递归处理左区间和右区间
代码:
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
var (
hash map[int]int
)
func buildTree(inorder []int, postorder []int) *TreeNode {
hash = make(map[int]int)
for i, v := range inorder { // 用map保存中序序列的数值对应位置
hash[v] = i
}
// 以左闭右闭的原则进行切分
root := rebuild(inorder, postorder, len(postorder)-1, 0, len(inorder)-1)
return root
}
// rootIdx表示根节点在后序数组中的索引,l, r 表示在中序数组中的前后切分点
func rebuild(inorder []int, postorder []int, rootIdx int, l, r int) *TreeNode {
if l > r { // 说明没有元素,返回空树
return nil
}
if l == r { // 只剩唯一一个元素,直接返回
return &TreeNode{Val : inorder[l]}
}
rootV := postorder[rootIdx] // 根据后序数组找到根节点的值
rootIn := hash[rootV] // 找到根节点在对应的中序数组中的位置
root := &TreeNode{Val : rootV} // 构造根节点
// 重建左节点和右节点
root.Left = rebuild(inorder, postorder, rootIdx-(r-rootIn)-1, l, rootIn-1)
root.Right = rebuild(inorder, postorder, rootIdx-1, rootIn+1, r)
return root
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构