python 图片相似算法
1、安装
pip install opencv_python
2、具体代码(借鉴)
import cv2 import numpy as np # 均值哈希算法 def aHash(img): # 缩放为8*8 img = cv2.resize(img, (8, 8), interpolation=cv2.INTER_CUBIC) # 转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # s为像素和初值为0,hash_str为hash值初值为'' s = 0 hash_str = '' # 遍历累加求像素和 for i in range(8): for j in range(8): s = s + gray[i, j] # 求平均灰度 avg = s / 64 # 灰度大于平均值为1相反为0生成图片的hash值 for i in range(8): for j in range(8): if gray[i, j] > avg: hash_str = hash_str + '1' else: hash_str = hash_str + '0' return hash_str # 差值感知算法 def dHash(img): #缩放8*8 img = cv2.resize(img, (9, 8), interpolation=cv2.INTER_CUBIC) # 转换灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hash_str = '' # 每行前一个像素大于后一个像素为1,相反为0,生成哈希 for i in range(8): for j in range(8): if gray[i, j] > gray[i, j+1]: hash_str = hash_str+'1' else: hash_str = hash_str+'0' return hash_str # Hash值对比 def cmpHash(hash1, hash2): n = 0 # hash长度不同则返回-1代表传参出错 if len(hash1) != len(hash2): return -1 # 遍历判断 for i in range(len(hash1)): # 不相等则n计数+1,n最终为相似度 if hash1[i] != hash2[i]: n = n+1 return n if __name__ == '__main__': img1 = cv2.imread('./imgs/4.jpg') img2 = cv2.imread('./imgs/5.jpg') # hash1 = aHash(img1) # hash2 = aHash(img2) # print(hash1, type(hash1)) # print(hash2, type(hash2)) # n = cmpHash(hash1, hash2) # print('均值哈希算法相似度:'+ str(n)) # hash1 = dHash(img1) hash2 = dHash(img2) print(hash1) print(hash2) n = cmpHash(hash1, hash2) print('差值哈希算法相似度:'+ str(n))