word_cloud = []
cc = [{"c58":341,"c59":525,"c56":507,"c57":341,"c54":639,"c55":499,"c23":542,"c63":751,"c64":815,"c17":306,"c16":360,"c19":593,"c18":330,"c11":427,"c10":443,"c13":396,"c12":451,"c15":352,"c14":416,"c32":776,"c33":770,"c30":354,"c31":760,"c36":542,"c37":363,"c34":806,"c35":506,"c38":379,"c39":489,"c40":559,"c41":419,"c42":441,"c43":419,"c44":447,"c45":499,"c46":527,"c47":580,"c48":663,"c49":489,"c6":353,"c5":261,"c4":308,"c3":280,"c9":377,"c8":242,"c7":238,,"c51":542,"c50":625}]
sortdata = sorted(cc[0].items(),key=lambda item:int(item[0][1:]))
for item in sortdata:
word_cloud.append({item[0]:item[1]})
print word_cloud
输出:
[{'c3': 280}, {'c4': 308}, {'c5': 261}, {'c6': 353}, {'c7': 238}, {'c8': 242}, {'c9': 377}, {'c10': 443}, {'c11': 427}]
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· .NET Core 中如何实现缓存的预热?
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性