强化学习实战:表格型Q-Learning玩井字棋(二)开始训练!

强化学习实战 | 表格型Q-Learning玩井字棋(一)搭个框架 中,我们构建了以Game() 和 Agent() 类为基础的框架,本篇我们要让agent不断对弈,维护Q表格,提升棋力。那么我们先来盘算一下这几个问题:

  • Q1:作为陪练的一方,策略上有什么要求吗?
  • A1:有,出棋所导致的状态要完全覆盖所有可能状态。满足此条件下,陪练的棋力越强(等同于环境越严苛),agent训练的效果越好。AlphaGo的例子告诉我们,陪练的策略也是可以分阶段调整的:前期先用人类落子的预测模型当陪练,中后期让agent自我博弈。在井字棋的例子中,环境较简单,可以直接让agent自我博弈,采用 ε-greedy 策略(贪心地选择Q值最大的动作执行,并以 ε 的概率试探其他的动作)即可实现可能状态的覆盖。
  • Q2:采用自我博弈的方式,也就意味着,在陪练动作前,也要调用Q表格,是吗?
  • A2:是,不仅是调用,如果当前状态不在Q表格中,还要往Q表格中新增状态,否则无法将执行 ε-greedy 策略。
  • Q3:而且陪练动作之后,还要更新Q表格?
  • A3:是。
  • Q4:环境的定义是以一方的视角分配奖励的,对于陪练来说,不能简单地调用Q表格进行决策吧?假设agent是蓝方,陪练是红方,直接用Q表进行决策,那么红方就是以自身落蓝字进行考虑的,所考虑的状态完全是非法的——例如场上仅有一个蓝子,此刻又是待落蓝子。
  • A4:对,不能简单调用!在陪练动作前,要把视角翻转——如果当前状态是 [1, -1, 0, 0, 0, 0, 0, 0, 1],翻转就是把当前状态视作 [-1, 1, 0, 0, 0, 0, 0, 0, -1],再考虑自身如何落蓝子。

再回想一下Q-Learning算法:

细节也就逐渐清晰了,我们要实现的目标如下:

  1. 维护记录蓝方上一状态,动作及奖励的变量组 lastState_bluelastAction_bluelastReward_blue;维护记录红方上一状态,动作及奖励的变量组 lastState_red,lastAction_redlastReward_red。(要时刻注意,一方行动之后的状态并不是自身的后继状态,而是进入对手的新状态,只有当自身再次行动时,此时的状态才是后继状态:S0blue → A0blue → S0red → A0red → S1blue  → A1blue  → S1red →  A1red  → S2blue  …,Q表中的状态数是4520,大于这个数字说明代码一定是哪里写错了) 
  2. 构建一个 ε-greedy 策略函数 epsilon_greedy(env),并区分蓝/红方,红方(陪练)动作时,把当前状态翻转。
  3. 构建一个往Q表格新增状态的函数 addNewState(env), 并区分蓝/红方,红方调用时,把当前状态翻转。  
  4. 构建一个更新Q表格状态价值的函数 updateQtable(env),可以选择锁定蓝方视角:蓝方行动前调用,也可以选择蓝方和红方视角下都调用(红方调用时需要翻转状态),可以想到,这样的双向调用在相同轮次内更新的状态更多。另一个加快更新的方法是考虑等价的棋局,翻转或旋转运动可以创造等价的7个棋局(见下图),分别是:旋转90°,旋转180°,旋转270° ,垂直翻转,水平翻转,旋转90°+垂直翻转,旋转90°+水平翻转。双向更新+等价棋局同步更新,这样我们就能在一轮对局中更新 2×8=16 个Q值,大大提高了更新速度。  

 秉着“先跑通,再优化”的信条,先实现蓝红两方的双向更新,等价棋局更新这个任务就下次一定啦。整体代码如下:

import gym
import random
import time

# 查看所有已注册的环境
# from gym import envs
# print(envs.registry.all()) 

def str2tuple(string): # Input: '(1,1)'
    string2list = list(string)
    return ( int(string2list[1]), int(string2list[4]) ) # Output: (1,1)

class Game():
    def __init__(self, env):
        self.INTERVAL = 0 # 行动间隔
        self.RENDER = False # 是否显示游戏过程
        self.first = 'blue' if random.random() > 0.5 else 'red' # 随机先后手
        self.currentMove = self.first
        self.env = env
        self.agent = Agent()
    
    def switchMove(self): # 切换行动玩家
        move = self.currentMove
        if move == 'blue': self.currentMove = 'red'
        elif move == 'red': self.currentMove = 'blue'
    
    def newGame(self): # 新建游戏
        self.first = 'blue' if random.random() > 0.5 else 'red'
        self.currentMove = self.first
        self.env.reset()
        self.agent.reset()
    
    def run(self): # 玩一局游戏
        self.env.reset() # 在第一次step前要先重置环境,不然会报错
        while True:
            print(f'--currentMove: {self.currentMove}--')
            self.agent.updateQtable(self.env, self.currentMove, False)
            
            if self.currentMove == 'blue':
                self.agent.lastState_blue = self.env.state.copy()
            elif self.currentMove == 'red':
                self.agent.lastState_red = self.agent.overTurn(self.env.state) # 红方视角需将状态翻转
                
            action = self.agent.epsilon_greedy(self.env, self.currentMove)
            if self.currentMove == 'blue':
                self.agent.lastAction_blue = action['pos']
            elif self.currentMove == 'red':
                self.agent.lastAction_red = action['pos']
            
            state, reward, done, info = self.env.step(action)
            if done:
                self.agent.lastReward_blue = reward
                self.agent.lastReward_red = -1 * reward
                self.agent.updateQtable(self.env, self.currentMove, True)
            else:     
                if self.currentMove == 'blue':
                    self.agent.lastReward_blue = reward
                elif self.currentMove == 'red':
                    self.agent.lastReward_red = -1 * reward
            
            if self.RENDER: self.env.render()
            self.switchMove()
            time.sleep(self.INTERVAL)
            if done:
                self.newGame()
                if self.RENDER: self.env.render()
                time.sleep(self.INTERVAL)
                break
                    
class Agent():
    def __init__(self):
        self.Q_table = {}
        self.EPSILON = 0.05
        self.ALPHA = 0.5
        self.GAMMA = 1 # 折扣因子
        self.lastState_blue = None
        self.lastAction_blue = None
        self.lastReward_blue = None
        self.lastState_red = None
        self.lastAction_red = None
        self.lastReward_red = None
    
    def reset(self):
        self.lastState_blue = None
        self.lastAction_blue = None
        self.lastReward_blue = None
        self.lastState_red = None
        self.lastAction_red = None
        self.lastReward_red = None
    
    def getEmptyPos(self, env_): # 返回空位的坐标
        action_space = []
        for i, row in enumerate(env_.state):
            for j, one in enumerate(row):
                if one == 0: action_space.append((i,j)) 
        return action_space
        
    def randomAction(self, env_, mark): # 随机选择空格动作
        actions = self.getEmptyPos(env_)
        action_pos = random.choice(actions)
        action = {'mark':mark, 'pos':action_pos}
        return action
    
    def overTurn(self, state): # 翻转状态
        state_ = state.copy()
        for i, row in enumerate(state_):
            for j, one in enumerate(row):
                if one != 0: state_[i][j] *= -1
        return state_
    
    def addNewState(self, env_, currentMove): # 若当前状态不在Q表中,则新增状态
         state = env_.state if currentMove == 'blue' else self.overTurn(env_.state) # 如果是红方行动则翻转状态
         if str(state) not in self.Q_table:
             self.Q_table[str(state)] = {}
             actions = self.getEmptyPos(env_)
             for action in actions:
                 self.Q_table[str(state)][str(action)] = 0
        
    def epsilon_greedy(self, env_, currentMove): # ε-贪心策略
        state = env_.state if currentMove == 'blue' else self.overTurn(env_.state) # 如果是红方行动则翻转状态
        Q_Sa = self.Q_table[str(state)]
        maxAction, maxValue, otherAction = [], -100, [] 
        for one in Q_Sa:
            if Q_Sa[one] > maxValue:
                maxValue = Q_Sa[one]
        for one in Q_Sa:
            if Q_Sa[one] == maxValue:
                maxAction.append(str2tuple(one))
            else:
                otherAction.append(str2tuple(one))
        
        try:
            action_pos = random.choice(maxAction) if random.random() > self.EPSILON else random.choice(otherAction)
        except: # 处理从空的otherAction中取值的情况
            action_pos = random.choice(maxAction) 
        action = {'mark':currentMove, 'pos':action_pos}
        return action
    
    
    def updateQtable(self, env_, currentMove, done_):
        
        judge = (currentMove == 'blue' and self.lastState_blue is None) or \
                (currentMove == 'red' and self.lastState_red is None)
        if judge: # 边界情况1:若agent无上一状态,说明是游戏中首次动作,那么只需要新增状态就好,无需更新Q值
            self.addNewState(env_, currentMove)
            return
                
        if done_: # 边界情况2:若当前状态S_是终止状态,则无需把S_添加至Q表格中,直接令maxQ_S_a = 0,并同时更新双方Q值
            for one in ['blue', 'red']:
                S = self.lastState_blue  if one == 'blue' else self.lastState_red
                a = self.lastAction_blue if one == 'blue' else self.lastAction_red 
                R = self.lastReward_blue if one == 'blue' else self.lastReward_red
                print('lastState S:\n', S)
                print('lastAction a: ', a)
                print('lastReward R: ', R)
                maxQ_S_a = 0
                self.Q_table[str(S)][str(a)] = (1 - self.ALPHA) * self.Q_table[str(S)][str(a)] \
                                                + self.ALPHA * (R + self.GAMMA * maxQ_S_a)
                print('Q(S,a) = ', self.Q_table[str(S)][str(a)])
            return
          
        # 其他情况下:Q表无当前状态则新增状态,否则直接更新Q值
        self.addNewState(env_, currentMove)
        S_ = env_.state if currentMove == 'blue' else self.overTurn(env_.state)
        S = self.lastState_blue  if currentMove == 'blue' else self.lastState_red
        a = self.lastAction_blue if currentMove == 'blue' else self.lastAction_red 
        R = self.lastReward_blue if currentMove == 'blue' else self.lastReward_red
        Q_S_a = self.Q_table[str(S_)]
        maxQ_S_a = -100 
        for one in Q_S_a:
            if Q_S_a[one] > maxQ_S_a:
                maxQ_S_a = Q_S_a[one]
        print('lastState S:\n', S)
        print('State S_:\n', S_)
        print('lastAction a: ', a)
        print('lastReward R: ', R)
        self.Q_table[str(S)][str(a)] = (1 - self.ALPHA) * self.Q_table[str(S)][str(a)] \
                                        + self.ALPHA * (R + self.GAMMA * maxQ_S_a)
        print('Q(S,a) = ', self.Q_table[str(S)][str(a)])
        print('\n')
                                            
env = gym.make('TicTacToeEnv-v0')
game = Game(env)
for i in range(100000):
    print('episode', i)
    game.run()
Q_table = game.agent.Q_table
View Code

测试

先跑个10万局游戏,看看大体的趋势对不对。

项目1:查看Q表格的状态数

略小于4520——这是可以理解的,因为agent大概率选择Q值高的动作,仅有 ε的概率(我设置的是5%)会尝试别的动作。增加训练数或提高训练效率就能更好地覆盖到全部状态。

项目2:查看初始状态

每个动作的Q值应该都差不多,而且应该呈现出对称性。

与预测的不太一致,(0,0)与(2,2)动作后是等价局面,二者Q值应该接近。Q值基本上都是负的,说明10万局游戏中,赢的情况较少。

项目3:查看早期状态

早期状态应该能显示出某些动作具有相对低的Q值——“走这一步你大概就输了”。

 这是一个后手的情况,可以看出,除了走(1,1),其余走法基本必输。奖励为赢方+1,输方-1,因为折扣因子设为1,所以Q值越接近-1,表示输的几率越大。

项目4:查看中后期的状态

中后期的状态应该能显示出某些动作是必赢 / 必输的。

“走哪儿都输”:

 

 “走这一步,必赢”:

 走(0,2)确实是必赢的,你看出来了吗?

小结

测试过后,除了初始状态的Q值 不太对劲,其他的局面基本符合认知,但我在翻查Q表格的时候发现,其实很多状态都没有更新,Q表格也没有覆盖所有合法状态。而且,每一轮只更新2个Q值确实是太慢了,10万局游戏花了不少时间。这些问题,就留到下一节解决吧!

说一说踩的坑

  • 本以为翻转状态可以直接优雅地 state =  -1 * state,但转换成字符判定时却遇到了问题,因为numpy.array中的元素居然有负零的存在 0 * -1 = - 0,转换成字符串后 '0' 不等于 '-0'!!解决方法:只更改 1 和 -1。
  • 深拷贝与浅拷贝的问题,self.agent.lastState_blue = self.env.state,不是直接赋值,而是赋予了 self.env.state 的引用,所以 self.agent.lastState_blue 的值是变化的,然后导致一系列的错误。解决方法:self.agent.lastState_blue = self.env.state.copy()。
  • 有两个边界情况要注意,一是首次动作时没有上一状态;二是动作后若游戏结束,要直接更新Q值。
posted @ 2021-12-09 14:22  埠默笙声声声脉  阅读(1665)  评论(0编辑  收藏  举报