matlab实现雅可比、高斯塞德尔、后项误差计算
稀疏矩阵生成:
function [a, b] = aparsesetup(n)
e = ones(n, 1);
n2 = n / 2;
a = spdiags([-e 3*e -e], -1:1, n, n);
a(n2+1, n2) = -1; a(n2, n2+1) = -1;
b = zeros(n, 1);
b(1) = 2; b(n) = 2;
b(2 : n-1) = 1;
end
雅可比方法:
function x = jacobi(a, b, k)
n = length(b);
d = diag(a);
r = a - diag(d);
x = zeros(n, 1);
for j = 1 : k
x = (b - r * x) ./ d;
end
end
高斯塞德尔方法:
function [x, k] = GaussSeidel(a, b)
err = 1e-6;
n = length(b);
x = zeros(n, 1);
k = 0;
L = zeros(n, 1);
while 1
xk = x;
for i = 1 : n
for j = 1 : n
if i ~= j
L(j) = a(i, j) * x(j);
end
end
s = sum(L);
L = 0;
x(i) = (b(i) - s) / a(i, i);
end
if norm(x - xk, Inf)<err
break;
end
k = k + 1;
end
end
后项误差计算:
function be = getbackerror(x, x0)
n = length(x);
if nargin==1
x0 = ones(n, 1);
end
sum = 0;
for i = 1 : n
sum = sum + abs(x(i) - x0(i));
end
be = sum;
end