
指数分布的分布函数和概率密度函数的推导,牢记指数分布的分布函数为1-e^(-λx),很多人在初学时,只记得指数分布的概率密度函数,e^(-λx),再利用积分计算概率,这是对的,但有人利用积分直接得分布函数,这样就错了。从上述过程来看,指数分布公式里的λ与单位时间下泊松分布的λ相同,不是单位时间下就不同了。以下举例:
指数分布的分布函数和概率密度函数的推导,牢记指数分布的分布函数为1-e^(-λx)
前言:重在记录,可能出错。
之前推导出了泊松分布的概率公式——泊松分布概率公式的推导,现在推导一下指数分布的分布函数和概率密度函数。
很多人在初学时,只记得指数分布的概率密度函数,e^(-λx),再利用积分计算概率,这是对的,但有人利用积分直接得分布函数,这样就错了。
1. 首先,指数分布描述的是等待事件下一次发生的时间间隔t的概率,分布函数为:
求分布函数可以先求
2. 其次,描述的是等待事件下一次发生的时间间隔大于t的概率,换一种说法,即在t时间(t个单位时间)内事件未发生(发生次数为0)的概率。描述一个事件在一段时间内发生次数的概率,恰好是泊松分布。
3.每个单位时间内事件发生次数为0的概率使用泊松分布转换为代数式为
那么‘在t个单位时间内事件发生次数为0的概率’,即
4. 最后,综上可得,将t替换为x,当x≥0时,指数分布的分布函数为:
当x≥0时,指数分布的概率密度函数为:
5. 从上述过程来看,指数分布公式里的λ与单位时间下泊松分布的λ相同,不是单位时间下就不同了。以下举例:
例题:公司茶水间饮水机,平均每分钟有一名员工接水并离开。分别以泊松分布和指数分布计算,三分钟没有员工在茶水间饮水机接水并离开的概率。
解:
(1).泊松分布:
(2).指数分布:
三分钟内事件未发生,即事件发生的间隔超过了三分钟
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】