单位冲激偶信号δ'(t)的基本性质
单位冲激偶信号 \(\delta^\prime(t)\) 的基本性质
-
\(\delta^\prime(t)\)的面积为零:\(\displaystyle\int_{-\infty}^{\infty} \delta^\prime(t)dt = 0\)
-
筛选特性:\(x(t)\delta^\prime(t-t_0) = x(t_0)\delta^\prime(t-t_0) - x^\prime(t_0)\delta(t-t_0)\)
推导过程:
\[\begin{aligned} \left(x(t)\delta(t-t_0)\right)^\prime &= x(t_0)\delta'(t-t_0)\\ &= x'(t) \delta(t-t_0) + x(t)\delta'(t-t_0)\\ &= x'(t_0)\delta(t-t_0) + x(t)\delta'(t-t_0)\\ x(t)\delta'(t-t_0) &= x(t_0) \delta'(t-t_0) - x'(t_0)\delta(t-t_0) \end{aligned} \] -
取样特性:\(\displaystyle\int_{-\infty}^{+\infty}x(t)\delta^\prime(t-t_0) dt = -x^\prime(t_0)\)
注意积分区间是否包含冲激点。
-
微分器:\(x(t) * \delta^\prime(t) = x^\prime(t)\),\(x(t)*\delta^\prime(t-t_0) = x^\prime(t-t_0)\)
推导过程:
\[\begin{aligned} x(t) * \delta'(t-t_0) &= \int_{-\infty}^{+\infty} x(k) \delta'\left( (t - k) -t_0 \right) dk\\ &= \int_{-\infty}^{+\infty} - x(k) \delta'\left(k-(t-t_0)\right) dk\\ &= -\int_{-\infty}^{+\infty} x(t-t_0)\delta'(k-(t-t_0)) - x'(t-t_0)\delta(k-(t-t_0)) dk\\ &= x'(t-t_0) \end{aligned} \]注意:卷积运算 \(f(t)*g(t) = \int_{-\infty}^{\infty}f(k) g(t-k)\),若 \(g(t)=h(t-t_0)\),则\(g(t-k)=h(t-k-t_0)\),所以 \(f(t)*h(t-t_0) = \int_{-\infty}^{\infty}f(k) h((t-k)-t_0)\)。
-
展缩特性:\(\delta^\prime(at+b)=\frac{1}{a|a|}\delta^\prime(t+\frac{b}{a})\)
-
这是一个奇函数