wqy1027

eeee

 

Flume 配置,安装,使用,案例

分布式日志采集系统Flume学习

1、Flume架构

1).Hadoop业务开发流程

2)Flume概述

flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。

支持在日志系统中定制各类数据发送方,用于收集数据;

同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。

flume的数据流由事件(Event)贯穿始终。

事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把event推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。

Event的概念:

flume的核心是把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,flume再删除自己缓存的数据。 在整个数据的传输的过程中,流动的是event,即事务保证是在event级别进行的。那么什么是event呢?—–event将传输的数据进行封装,是flume传输数据的基本单位,如果是文本文件,通常是一行记录,event也是事务的基本单位。event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。event代表着一个数据的最小完整单元,从外部数据源来,向外部的目的地去。

简单理解:event信息就是flume收集到的数据(日志记录)

 

Flume 运行的核心是 Agent。Flume以agent为最小的独立运行单位。一个agent就是一个JVM。

它是一个完整的数据收集工具,含有三个核心组件,分别是source、 channel、 sink。

通过这些组件, Event 可以从一个地方流向另一个地方,如下图所示。

 

flume之所以这么神奇,是源于它自身的一个设计,这个设计就是agent,agent本身是一个java进程,运行在日志收集节点—所谓日志收集节点就是服务器节点。

agent里面包含3个核心的组件:source—->channel—–>sink,类似生产者、仓库、消费者的架构。

source:source组件是专门用来收集数据的,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。

channel:source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。

sink:sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、hbase、solr、自定义。

source

Source是数据的收集端,负责将数据捕获后进行特殊的格式化,将数据封装到事件(event) 里,然后将事件推入Channel中。 Flume提供了很多内置的Source, 支持 Avro, log4j, syslog 和 http post(body为json格式)。可以让应用程序同已有的Source直接打交道,如AvroSource

如果内置的Source无法满足需要, Flume还支持自定义Source。

 

 

Channel

Channel是连接Source和Sink的组件,大家可以将它看做一个数据的缓冲区(数据队列),它可以将事件暂存到内存中也可以持久化到本地磁盘上, 直到Sink处理完该事件。介绍两个较为常用的Channel, MemoryChannel和FileChannel。

Channel支持的类型

 

Sink

Sink从Channel中取出事件,然后将数据发到别处,可以向文件系统、数据库、 hadoop存数据, 也可以是其他agent的Source。在日志数据较少时,可以将数据存储在文件系统中,并且设定一定的时间间隔保存数据。

 

3)Flume运行机制

Flume 的核心是把数据从数据源收集过来,再送到目的地。为了保证输送一定成功,在送到目的地之前,会先缓存数据,待数据真正到达目的地后,删除自己缓存的数据

Flume 传输的数据的基本单位是 Event,如果是文本文件,通常是一行记录,这也是事务的基本单位。 Event 从 Source,流向 Channel,再到 Sink,本身为一个 byte 数组,并可携带 headers 信息。 Event 代表着一个数据流的最小完整单元,从外部数据源来,向外部的目的地去。

值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。

比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,

也就是说,多个agent可以协同工作。

 

4)Flume可靠性

Flume 使用事务性的方式保证传送Event整个过程的可靠性。 Sink 必须在Event 已经被传达到下一站agent里,又或者,已经被存入外部数据目的地之后,才能把 Event 从 Channel 中 remove 掉。这样数据流里的 event 无论是在一个 agent 里还是多个 agent 之间流转,都能保证可靠,因为以上的事务保证了 event 会被成功存储起来。比如 Flume支持在本地保存一份channel文件作为备份,而memory channel 将event存在内存 queue 里,速度快,但丢失的话无法恢复。

 

5)flume的广义用法(多个agent顺序连接)

可以将多个Agent顺序连接起来,将最初的数据源经过收集,存储到最终的存储系统中。这是最简单的情况,一般情况下,应该控制这种顺序连接的 Agent 的数量,因为数据流经的路径变长了,如果不考虑failover的话,出现故障将影响整个Flow上的Agent收集服务。

 

 

 

2、Flume的安装

1.上传压缩包并解压(/usr/local/soft)

tar -zxvf apache-flume-1.9.0-bin.tar.gz

 

 

2.重命名目录,并配置环境变量

mv apache-flume-1.9.0-bin/ flume-1.9.0
vim /etc/profile
export FLUME_HOME=/usr/local/soft/flume-1.9.0 $FLUME_HOME/bin
source /etc/profile

 

3.查看flume版本

flume-ng version

 

 

3、使用案例

在使用之前,提供一个大致思想,使用Flume的过程是确定scource类型,channel类型和sink类型,编写conf文件并开启服务,在数据捕获端进行传入数据流入到目的

案例一:从控制台打入数据,在控制台显示

1、确定scource类型,channel类型和sink类型

确定的使用类型分别是,netcat source, memory channel, logger sink.

2、编写conf文件

#a代表agent的名称,r1代表source的名称。c1代表channel名称,k1代表的是sink的名称
#声明各个组件
a.sources=r1
a.channels=c1
a.sinks=k1
#定义source类型,这里是试用netcat的类型
a.sources.r1.type=netcat
a.sources.r1.bind=192.168.80.100
a.sources.r1.port=8888
#定义source发送的下游channel
a.sources.r1.channels=c1
#定义channel
a.channels.c1.type=memory
#缓存的数据条数
a.channels.c1.capacity=1000
#事务数据量
a.channels.c1.transactionCapacity=1000
#定义sink的类型,确定上游channel
a.sinks.k1.channel=c1
a.sinks.k1.type=logger

3、开启服务,我们重新开启复制一个客户端进行开启服务

命令: 注意 -n 后面跟着的是你在conf文件中定义好的,-f 后面跟着的是编写conf文件的路径

[root@master flumeconfs]# flume-ng agent -n a -c /usr/local/soft/flume-1.9.0/conf -f ./netcat.conf -Dflume.root.logger=DEBUG,console

4、在另一个客户端输入命令:(需要先启动hadoop)

注意:这里的master和8888是在conf文件中设置好的ip地址和端口

在输入第二个命令的窗口中输入数据,回车,在服务端就会接收到数据。

yum install -y telnet
yum install -y nc
第一种方式打开:telnet master 8888
单独起一个线程,不会占用端口号
第二种方式打开:nc -lk 8888
单独起一个线程,会占用端口号

 

 

 

案例二、从本地指定路径中打入数据到HDFS

1、同样,我们需要先确定scource类型,channel类型和sink类型

我们确定使用的类型分别是,spooldir source, memory channle, hdfs sink

2、编写conf文件

a1.sources = r1
a1.sinks = k1
a1.channels = c1
#指定spooldir的属性
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /usr/local/soft/flumedata
#时间拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = timestamp
#指定sink的类型
a1.sinks.k1.type = hdfs
#指定hdfs的集群地址和路径,路径如果没有创建会自动创建
a1.sinks.k1.hdfs.path =hdfs://master:9000/shujia/bigdata19/flumeout/log_s/dt=%Y-%m-%d
#指定hdfs路径下生成的文件的前缀
a1.sinks.k1.hdfs.filePrefix = log_%Y-%m-%d
#手动指定hdfs最小备份
a1.sinks.k1.hdfs.minBlockReplicas=1
#设置数据传输类型
a1.sinks.k1.hdfs.fileType = DataStream
#如果参数为0,不按照条数生成文件。如果参数为n,就是按照n条生成一个文件
a1.sinks.k1.hdfs.rollCount = 10000
#这个参数是hdfs下文件sink的数据size。每sink 32MB的数据,自动生成一个文件
a1.sinks.k1.hdfs.rollSize =0
#每隔n 秒 将临时文件滚动成一个目标文件。如果是0,就不按照时间进行生成目标文件。
a1.sinks.k1.hdfs.rollInterval =0
a1.sinks.k1.hdfs.idleTimeout=0
#指定channel
a1.channels.c1.type = memory
#暂存条数
a1.channels.c1.capacity = 10000
#每次sink取的条数
a1.channels.c1.transactionCapacity = 1000
 #组装
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

3、开启服务

[root@master flumedata]# flume-ng agent -n a1 -c /usr/local/soft/flume-1.9.0/conf -f ./dir2hdfs.conf -Dflume.root.logger=DEBUG,console

4、将文件复制到指定的目录下

cp DIANXIN.csv /usr/local/soft/flumedata/

 

课堂穿插案例:手动打数据到hive表

a1.sources = r1
a1.sinks = k1
a1.channels = c1


#定义source类型,这里是试用netcat的类型
a1.sources.r1.type=netcat
a1.sources.r1.bind=192.168.80.100
a1.sources.r1.port=8888

#指定sink的类型
a1.sinks.k1.type = hdfs
#指定hdfs的集群地址和路径,路径如果没有创建会自动创建
a1.sinks.k1.hdfs.path =hdfs://master:9000/shujia/bigdata19/flumeout2/log_s/test
#指定hdfs路径下生成的文件的前缀
a1.sinks.k1.hdfs.filePrefix = log_test
#手动指定hdfs最小备份
a1.sinks.k1.hdfs.minBlockReplicas=1
#设置数据传输类型
a1.sinks.k1.hdfs.fileType = DataStream
#如果参数为0,不按照条数生成文件。如果参数为n,就是按照n条生成一个文件
a1.sinks.k1.hdfs.rollCount = 100
#这个参数是hdfs下文件sink的数据size。每sink 32MB的数据,自动生成一个文件
a1.sinks.k1.hdfs.rollSize =0
#每隔n 秒 将临时文件滚动成一个目标文件。如果是0,就不按照时间进行生成目标文件。
a1.sinks.k1.hdfs.rollInterval =0
a1.sinks.k1.hdfs.idleTimeout=0



#指定channel
a1.channels.c1.type = memory
#暂存的条数
a1.channels.c1.capacity = 1000
#每次sink取的条数
a1.channels.c1.transactionCapacity = 10


 #组装
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

 

 

案例三、从java代码中进行捕获打入到HDFS

1、先确定scource类型,channel类型和sink类型

确定的三个组件的类型是,avro source, memory channel, hdfs sink

2、打开maven项目,添加依赖

            <!-- https://mvnrepository.com/artifact/org.apache.flume/flume-ng-core -->
            <dependency>
                <groupId>org.apache.flume</groupId>
                <artifactId>flume-ng-core</artifactId>
                <version>1.9.0</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flume.flume-ng-clients</groupId>
                <artifactId>flume-ng-log4jappender</artifactId>
                <version>1.9.0</version>
            </dependency>

 

 3、设置log4J的内容

 

log4j.rootLogger=INFO,stdout,flume

log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target = System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} [%t] [%c] [%p] - %m%n


log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = 192.168.80.100
log4j.appender.flume.Port = 41414
log4j.appender.flume.UnsafeMode = true
log4j.appender.flume.layout=org.apache.log4j.PatternLayout 
log4j.appender.flume.layout.ConversionPattern=%m%n

 

 编写java代码(示例,可以修改logger打印的内容)

package com;

import org.apache.log4j.Logger;

import java.text.SimpleDateFormat;
import java.util.Date;

public class LoggerToFlume {
    public static void main(String[] args) throws InterruptedException {
        //创建一个logger对象
        Logger logger = Logger.getLogger(LoggerToFlume.class.getName());

        //写一个死循环
        while (true) {
            Date date = new Date();
            //创建一个日期格式化对象
            SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            String time=sdf.format(date);

            logger.info("当前的时间是:"+time);
            //让线程休眠一会儿
            Thread.sleep(1000);
        }

    }
}

 

4、编写conf文件

#定义agent名, source、channel、sink的名称
a.sources = r1
a.channels = c1
a.sinks = k1

#具体定义source
a.sources.r1.type = avro
a.sources.r1.bind = 192.168.80.100
a.sources.r1.port = 41414

#具体定义channel
a.channels.c1.type = memory
a.channels.c1.capacity = 10000
a.channels.c1.transactionCapacity = 1000

#具体定义sink
a.sinks.k1.type = hdfs
a.sinks.k1.hdfs.path =hdfs://master:9000/shujia/bigdata19/flumeout2/flume_hdfs_avro2
a.sinks.k1.hdfs.filePrefix = events-
a.sinks.k1.hdfs.minBlockReplicas=1
a.sinks.k1.hdfs.fileType = DataStream
#不按照条数生成文件
a.sinks.k1.hdfs.rollCount = 1000
a.sinks.k1.hdfs.rollSize =0
#每隔N s将临时文件滚动成一个目标文件
a.sinks.k1.hdfs.rollInterval =0
a.sinks.k1.hdfs.idleTimeout=0 

#组装source、channel、sink
a.sources.r1.channels = c1
a.sinks.k1.channel = c1

5、开启服务,命令:

flume-ng agent -n a -c ../conf -f ./avro2hdfs2.conf -Dflume.root.logger=DEBUG,console

 

 

案例四、监控HBase日志到Hbase表中(这里可以换成其他组件日志监控)

1、监控日志

提前建好表

 create 'log','cf1'

编写conf文件 hbaselog2hdfs.conf  

# a表示给agent命名为a
# 给source组件命名为r1
a.sources = r1
# 给sink组件命名为k1
a.sinks = k1 
# 给channel组件命名为c1
a.channels = c1


#指定spooldir的属性
a.sources.r1.type = exec 
a.sources.r1.command = cat /usr/local/soft/hbase-1.4.6/logs/hbase-root-master-master.log

#指定sink的类型
a.sinks.k1.type = hbase
a.sinks.k1.table = log
a.sinks.k1.columnFamily = cf1

#指定channel
a.channels.c1.type = memory 
a.channels.c1.capacity = 10000
# 表示sink每次会从channel里取多少数据
a.channels.c1.transactionCapacity = 100

# 组装
a.sources.r1.channels = c1 
a.sinks.k1.channel = c1

运行

flume-ng agent -n a -c ../conf -f ./ hbaselog2hdfs.conf -Dflume.root.logger=DEBUG,console

2、监控自定义的文件

确保test_idoall_org表在hbase中已经存在:

hbase(main):002:0> create 'test_idoall_org','uid','name'
0 row(s) in 0.6730 seconds

=> Hbase::Table - test_idoall_org
hbase(main):003:0> put 'test_idoall_org','10086','name:idoall','idoallvalue'
0 row(s) in 0.0960 seconds

2.创建配置文件:

a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /usr/local/soft/flumedata/data.txt
a1.sources.r1.port = 44444
a1.sources.r1.host = 192.168.40.110

# Describe the sink
a1.sinks.k1.type = hbase
a1.sinks.k1.table = test_idoall_org
a1.sinks.k1.columnFamily = name
a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer

# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

3.启动flume agent:

flume-ng agent -n a1 -c ../../flume/conf -f ./file2hbase.conf -Dflume.root.logger=DEBUG, console

4.产生数据

echo "hello idoall.org from flume" >> data.txt

 

 

案例五、flume监控Http source

1、先确定scource类型,channel类型和sink类型

  确定的三个组件的类型是,http source, memory channel, logger sink.

2、编写conf文件

a1.sources=r1
a1.sinks=k1
a1.channels=c1
 
a1.sources.r1.type=http
a1.sources.r1.port=50000
a1.sources.r1.channels=c1
 
a1.sinks.k1.type=logger
a1.sinks.k1.channel=c1
 
a1.channels.c1.type=memory
a1.channels.c1.capacity=10000
# 表示sink每次会从channel里取多少数据
a1.channels.c1.transactionCapacity=100

3、启动服务

curl -X POST -d'[{"headers":{"h1":"v1","h2":"v2"},"body":"hello bigdata"}]'  http://192.168.40.110:50000

 

 

案例六、多路复制

1、将flume复制到node1,node2

[root@master soft]# scp -r flume-1.9.0 node1:`pwd`
[root@master soft]# scp -r flume-1.9.0 node2:`pwd`

2、在node1节点的/usr/local/soft/bigdata19/scripts 下新建配置文件:

a3.sources = r3
a3.channels = c3
a3.sources.r3.type = avro
a3.sources.r3.channels = c3
a3.sources.r3.bind = node1
a3.sources.r3.port = 4141

a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100

a3.sinks = k3
a3.sinks.k3.type = logger
a3.sinks.k3.channel = c3

3、在node2节点的 /usr/local/soft/bigdata19/scripts 下新建配置文件:

vim netcat-flume-loggers.conf

 

添加如下内容:

a4.sources = r4
a4.channels = c4
a4.sources.r4.type = avro
a4.sources.r4.channels = c4
a4.sources.r4.bind = node2
a4.sources.r4.port = 4141

a4.channels.c4.type = memory
a4.channels.c4.capacity = 1000
a4.channels.c4.transactionCapacity = 100

a4.sinks = k4
a4.sinks.k4.type = logger
a4.sinks.k4.channel = c4

4、在master节点的 /usr/local/soft/bigdata19/scrips 下新建配置文件:

vim netcat-flume-loggers.conf

添加如下内容

a2.sources = r1
a2.sinks = k1 k2
a2.channels = c1 c2

# Describe/configure the source
a2.sources.r1.type = netcat
a2.sources.r1.bind = master
a2.sources.r1.port = 44444

# Describe the sink
a2.sinks.k1.type = avro
a2.sinks.k1.hostname = node1
a2.sinks.k1.port = 4141

a2.sinks.k2.type = avro
a2.sinks.k2.hostname = node2
a2.sinks.k2.port = 4141

# Use a channel which buffers events in memory
a2.channels.c1.type = memory
a2.channels.c1.capacity = 1000
a2.channels.c1.transactionCapacity = 100

# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100

# Bind the source and sink to the channel
a2.sources.r1.channels = c1 c2
a2.sinks.k1.channel = c1
a2.sinks.k2.channel = c2

三台服务器的配置文件建好了,现在就可以启动flume集群了:

先启动node1和node2节点的logger服务端:

flume-ng agent -n a3 -c ../../flume-1.9.0/conf -f ./netcat-flume-loggers.conf -Dflume.root.logger=INFO,console
flume-ng agent -n a4 -c ../../flume-1.9.0/conf -f ./netcat-flume-loggers.conf -Dflume.root.logger=INFO,console

启动master节点的netcat:

flume-ng agent -n a2 -c ../../flume-1.9.0/conf -f ./netcat-flume-loggers.conf -Dflume.root.logger=INFO,console

 

开启netcat后此窗口就不能操作了,再新建一个master窗口启动telnet:

telnet master 44444

master上输入数据:

node1和node2接收数据:

 

 

案例七、故障转移

 

 

Flume支持使用将多个sink逻辑上分到一个sink组,sink组配合不同的SinkProcessor可以实现负载均衡和错误恢复的功能。这里的故障,指的是Sink故障

1)通过sinkgroups里priority属性配置的权重来决定哪台的优先级高,同一时间只能有一台机器工作

2)当当前的sink挂掉后切换为standby模式(假设优先级10),并立刻切换到另一台(假设优先级9),当sink修复好重新启动后,隔段时间会恢复使用优先级为10的sink

3)遇到故障时,我们要立即修复

master:

vim guzhang.conf

 

a1.sources = r1
a1.channels = c1
a1.sinks = k1 k2 

a1.sources.r1.type = netcat
a1.sources.r1.bind = master
a1.sources.r1.port = 4444

a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100

#将数据写到另一台Flume服务器上
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node1
a1.sinks.k1.port = 5555

#将数据写到另一台Flume服务器上
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = node2
a1.sinks.k2.port = 6666

#使用sink processor来控制channel的数据流向
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2  
a1.sinkgroups.g1.processor.type = failover
a1.sinkgroups.g1.processor.priority.k1 = 5
a1.sinkgroups.g1.processor.priority.k2 = 10

a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1

node1

a3.sources = r3
a3.channels = c3
a3.sources.r3.type = avro
a3.sources.r3.channels = c3
a3.sources.r3.bind = node1
a3.sources.r3.port = 5555

a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100

a3.sinks = k3
a3.sinks.k3.type = logger
a3.sinks.k3.channel = c3

node2

a4.sources = r4
a4.channels = c4
a4.sources.r4.type = avro
a4.sources.r4.channels = c4
a4.sources.r4.bind = node2
a4.sources.r4.port = 6666

a4.channels.c4.type = memory
a4.channels.c4.capacity = 1000
a4.channels.c4.transactionCapacity = 100

a4.sinks = k4
a4.sinks.k4.type = logger
a4.sinks.k4.channel = c4

先启动node1,node2上的

flume-ng agent -n a3 -c ../../flume-1.9.0/conf -f ./guzhang.conf -Dflume.root.logger=INFO,console
flume-ng agent -n a4 -c ../../flume-1.9.0/conf -f ./guzhang.conf -Dflume.root.logger=INFO,console

再启动master的

flume-ng agent -n a1 -c ../../flume-1.9.0/conf -f ./guzhang.conf -Dflume.root.logger=INFO,console

master输入数据

telnet master 4444

 

启动之后数据会输出到node2(因为node1是5,node2是10),再将node2手动关闭后数据输出到node1,如果把node2继续启动后,数据会继续输出到node2 。

 

案例八、负载均衡

通过将sinkprocessor里的type属性来控制processor模式,分别是(负载均衡load_balance、故障转移failover)

使用负载均衡以后,channel会轮训分配任务,减少机器负荷

master上的配置文件:(随机的)

a1.sources = r1
a1.channels = c1
a1.sinks = k1 k2 

a1.sources.r1.type = netcat
a1.sources.r1.bind = master
a1.sources.r1.port = 4444

a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100

a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node1
a1.sinks.k1.port = 5555

a1.sinks.k2.type = avro
a1.sinks.k2.hostname = node2
a1.sinks.k2.port = 6666

a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = random

a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c1

 

 

案例九、聚合

node1、node2两台日志服务机器实时生产日志主要类型为access.log、nginx.log、web.log 现在要求:

把node1、node2机器中的access.log、nginx.log、web.log 采集汇总到master机器上然后统一收集到hdfs中。 但是在hdfs中要求的目录为:

/shujia/bigdata19/flumelogs/access/20220616/** 
/shujia/bigdata19/flumelogs/nginx/20180616/** 
/shujia/bigdata19/flumelogs/web/20180616/**

 

场景分析:

数据流程处理分析:

 

实现:

node1对应的IP为 192.168.80.20
node2对应的IP为 192.168.80.30
master对应的IP为 192.168.80.100

 

node1和node2上配置文件

[root@node2 bigdata17]# mkdir -p /usr/local/soft/bigdata17/scrips/taillogs

[root@node2 bigdata17]# touch /usr/local/soft/bigdata19/scrips/taillogs/access.log
[root@node2 bigdata17]# touch /usr/local/soft/bigdata19/scrips/taillogs/nginx.log
[root@node2 bigdata17]# touch /usr/local/soft/bigdata19/scrips/taillogs/web.log
vim exec_source_avro_sink.conf
# Name the components on this agent 
a1.sources = r1 r2 r3 
a1.sinks = k1 
a1.channels = c1 

# Describe/configure the source 
a1.sources.r1.type = exec 
a1.sources.r1.command = tail -F /usr/local/soft/bigdata17/scrips/taillogs/access.log 
# static拦截器的功能就是往采集到的数据的header中插入自己定义的key-value对 
a1.sources.r1.interceptors = i1 
a1.sources.r1.interceptors.i1.type = static 
a1.sources.r1.interceptors.i1.key = type 
a1.sources.r1.interceptors.i1.value = access 

a1.sources.r2.type = exec 
a1.sources.r2.command = tail -F /usr/local/soft/bigdata17/scrips/taillogs/nginx.log 
a1.sources.r2.interceptors = i2 
a1.sources.r2.interceptors.i2.type = static 
a1.sources.r2.interceptors.i2.key = type 
a1.sources.r2.interceptors.i2.value = nginx 

a1.sources.r3.type = exec 
a1.sources.r3.command = tail -F /usr/local/soft/bigdata17/scrips/taillogs/web.log 
a1.sources.r3.interceptors = i3 
a1.sources.r3.interceptors.i3.type = static 
a1.sources.r3.interceptors.i3.key = type 
a1.sources.r3.interceptors.i3.value = web 

# Describe the sink 
a1.sinks.k1.type = avro 
a1.sinks.k1.hostname = master 
a1.sinks.k1.port = 41414 

# Use a channel which buffers events in memory 
a1.channels.c1.type = memory 
a1.channels.c1.capacity = 20000 
a1.channels.c1.transactionCapacity = 10000 

# Bind the source and sink to the channel 
a1.sources.r1.channels = c1 
a1.sources.r2.channels = c1 
a1.sources.r3.channels = c1 
a1.sinks.k1.channel = c1

在master上面开发flume配置文件

vim avro_source_hdfs_sink.conf
a1.sources = r1 
a1.sinks = k1 
a1.channels = c1 

# 定义source 
a1.sources.r1.type = avro 
a1.sources.r1.bind = master 
a1.sources.r1.port =41414 
# 添加时间拦截器 
a1.sources.r1.interceptors = i1 
a1.sources.r1.interceptors.i1.type = timestamp

# 定义channels 
a1.channels.c1.type = memory 
a1.channels.c1.capacity = 20000 
a1.channels.c1.transactionCapacity = 10000 

# 定义sink 
a1.sinks.k1.type = hdfs 
a1.sinks.k1.hdfs.path=hdfs://master:9000/shujia/bigdata17/flumelogs/%{type}/%Y%m%d 
a1.sinks.k1.hdfs.filePrefix = events 
a1.sinks.k1.hdfs.fileType = DataStream 
a1.sinks.k1.hdfs.writeFormat = Text 
# 时间类型 
a1.sinks.k1.hdfs.useLocalTimeStamp = true 
# 生成的文件不按条数生成 
a1.sinks.k1.hdfs.rollCount = 0 
# 生成的文件按时间生成 
a1.sinks.k1.hdfs.rollInterval = 30 
# 生成的文件按大小生成 
a1.sinks.k1.hdfs.rollSize = 10485760 
# 批量写入hdfs的个数 
a1.sinks.k1.hdfs.batchSize = 10000 
# flume操作hdfs的线程数(包括新建,写入等) 
a1.sinks.k1.hdfs.threadsPoolSize=10 
# 操作hdfs超时时间
a1.sinks.k1.hdfs.callTimeout=30000 


# 组装source、channel、sink 
a1.sources.r1.channels = c1 
a1.sinks.k1.channel = c1

采集端文件生成脚本 在node1与node2上面开发shell脚本,模拟数据生成 server.sh

# !/bin/bash 

while true 
    do
    date >> /usr/local/soft/bigdata19/scrips/taillogs/access.log; 
    date >> /usr/local/soft/bigdata19/scrips/taillogs/web.log; 
    date >> /usr/local/soft/bigdata19/scrips/taillogs/nginx.log; 
    sleep 0.5; 
done

顺序启动服务 master启动flume实现数据收集

flume-ng agent -n a1 -c ../../flume-1.9.0/conf -f ./avro_source_hdfs_sink.conf -Dflume.root.logger=INFO,console

node1与node2启动flume实现数据监控

 flume-ng agent -n a1 -c ../../flume-1.9.0/conf -f ./exec_source_avro_sink.conf -Dflume.root.logger=INFO,console

node1与node2启动生成文件脚本

sh server.sh

 

 

案例十、ChannelSelector案例

ChannelSelector的作用就是选出Event将要被发往哪个Channel。其共有两种类型,分别是Replicating(复制)和Multiplexing(多路复用)。

ReplicatingSelector会将同一个Event发往所有的Channel,Multiplexing会根据相应的原则,将不同的Event发往不同的Channel。默认是Replicating

  1. Multiplexing类型的ChannelSelector会根据Event中Header中的某个属性决定分发到哪个Channel。

  2. 每个event里的header默认是没有值的,所以,multiplexing类型的ChannelSelector一般会配合自定义拦截器使用

replicating类型例子:

a1.sources = r1
a1.channels = c1 c2 # 如果有100个Event,那么c1和c2中都会有这100个事件

a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100

multiplexing类型的ChannelSelector例子:

a1.sources = r1
a1.channels = c1 c2

a1.sources.source1.selector.type = multiplexing
a1.sources.source1.selector.header = title # 以header中的title对应的值作为条件
a1.sources.source1.selector.mapping.a = c2 # 如果header中title的值为a,使用c2这个channel
a1.sources.source1.selector.mapping.b = c1 # 如果header中title的值为b,使用c1这个channel
a1.sources.source1.selector.default = c1 # 默认使用c1这个channel

 

 

SinkProcessor

SinkProcessor共有三种类型,分别是DefaultSinkProcessor、LoadBalancingSinkProcessor和FailoverSinkProcessor

DefaultSinkProcessor对应的是单个的Sink,LoadBalancingSinkProcessor和FailoverSinkProcessor对应的是Sink Group,LoadBalancingSinkProcessor可以实现负载均衡的功能,FailoverSinkProcessor可以错误恢复的功能。

自定义Interceptor

使用Flume采集服务器本地日志,需要按照日志类型的不同,将不同种类的日志发往不同的分析系统。

需求:

在该案例中,我们以端口数据模拟日志,模拟不同类型的日志,我们需要自定义interceptor区分内容是否包含shujia,将其分别发往不同的分析系统(Channel)。

 

实现代码

import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.util.List;
import java.util.Map;

/**
 *  1. 如何自定义拦截器?
 *   flume的自定义拦截器需要实现Flume提供的Interceptor接口.
 *
 *  实现抽象方法:
 *      initialize: 完成一些初始化工作.
 *      close: 完成一些善后的工作
 *      intercept:拦截器的核心处理方法.  拦截的逻辑.
 *          intercept(Event event) : 单个event的拦截处理
 *          intercept(List<Event> events): 批次event的拦截处理
 *
 *  2. 拦截器的对象如何实例化?
 *    在拦截器中定义一个static的内部类,实现Flume提供的Builder接口
 *
 *   实现抽象方法:
 *      build : 用于构建拦截器对象
 *      configure:用于读取配置信息(xxxx.conf)
 *
 *
 *
 */
public class LogDataInterceptor implements Interceptor {
    @Override
    public void initialize() {

    }

    /*
        判断变成event的数据中是否包含shujia字符串,event==>header({}) + body(数据)
        如果包含,给event中的header中添加一个key-value: name/title/key ===  sj
        如果不包含,给event中的header中添加一个key-value: name/title/key ===  nsj
     */
    @Override
    public Event intercept(Event event) {
        //如何取出event中的header和body呢?
        //    Map<String, String> getHeaders();
        //    void setHeaders(Map<String, String> var1);
        //    byte[] getBody();
        Map<String, String> headers = event.getHeaders();
        String body = new String(event.getBody());

        //判断body是否包含shujia
        if(body.contains("shujia")){
            headers.put("title","sj");
        }else {
            headers.put("title","nsj");
        }

        return event;
    }

    @Override
    public List<Event> intercept(List<Event> list) {
        for (Event event : list) {
            intercept(event);
        }
        return list;
    }

    @Override
    public void close() {

    }
    
    public static class MyBuilder implements Builder{

        @Override
        public Interceptor build() {
           return new LogDataInterceptor();
        }

        @Override
        public void configure(Context context) {

        }
    }
}

引入依赖

<dependency>
    <groupId>org.apache.flume</groupId>
    <artifactId>flume-ng-core</artifactId>
    <version>1.9.0</version>
</dependency>

将代码打成jar包

将jar包放在flume的lib目录下。简单暴力,但是不方便管理

配置文件

1.进阶案例 - channel选择器 - 多路
a3 ==> a3.conf

a3.sources = r1
a3.channels = c1
a3.sinks = k1 

a3.sources.r1.type = avro
a3.sources.r1.bind = node2
a3.sources.r1.port = 6666

a3.channels.c1.type = memory
a3.channels.c1.capacity = 10000
a3.channels.c1.transactionCapacity = 100

a3.sinks.k1.type = logger

a3.sources.r1.channels = c1
a3.sinks.k1.channel = c1 

a2 ==> a2.conf
a2.sources = r1
a2.channels = c1
a2.sinks = k1

a2.sources.r1.type = avro
a2.sources.r1.bind = node1
a2.sources.r1.port = 5555

a2.channels.c1.type = memory
a2.channels.c1.capacity = 10000
a2.channels.c1.transactionCapacity = 100

a2.sinks.k1.type =logger

a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1


a1 ==> a1.conf
a1.sources = r1
a1.channels = c1 c2
a1.sinks = k1 k2 

a1.sources.r1.type = netcat
a1.sources.r1.bind = master
a1.sources.r1.port = 4444

#将选择器类型改为multiplexing分发
a1.sources.r1.selector.type = multiplexing
#检测每个event里head的title key
a1.sources.r1.selector.header = title
#如果title的值为at,吧event发到channel c1里,如果为ot,发到channel c2里,如果都不匹配,默认发到c2里
a1.sources.r1.selector.mapping.sj = c1
a1.sources.r1.selector.mapping.nsj = c2
a1.sources.r1.selector.default=c2
#给拦截器命名i1
a1.sources.r1.interceptors = i1
#这里写自定义类的全类名
a1.sources.r1.interceptors.i1.type = com.shujia.log2flume.LogDataInterceptor$MyBuilder
# 组装channel与source
a1.sources.r1.channels = c1 c2 



a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 100

a1.channels.c2.type = memory
a1.channels.c2.capacity = 10000
a1.channels.c2.transactionCapacity = 100

a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node1
a1.sinks.k1.port = 5555

a1.sinks.k2.type = avro
a1.sinks.k2.hostname = node2
a1.sinks.k2.port = 6666


a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

启动

先启动node1和node2上面的flume

flume-ng agent -n a2 -c ../../flume-1.9.0/conf -f ./a2.conf -Dflume.root.logger=INFO,console
flume-ng agent -n a3 -c ../../flume-1.9.0/conf -f ./a3.conf -Dflume.root.logger=INFO,console

最后启动master上面的flume

flume-ng agent -n a1 -c ../../flume-1.9.0/conf -f ./a3.conf -Dflume.root.logger=INFO,console

 

posted on 2022-10-04 15:53  不想写代码的小玉  阅读(432)  评论(0编辑  收藏  举报

导航