利用pytorch自定义CNN网络(三):构建CNN模型
本文是利用pytorch自定义CNN网络系列的第三篇,主要介绍如何构建一个CNN网络,关于本系列的全文见这里。
笔者的运行环境:CPU (AMD Ryzen™ 5 4600U) + pytorch (1.13,CPU版) + jupyter;
本文所用到的资源:链接:https://pan.baidu.com/s/1WgW3IK40Xf_Zci7D_BVLRg 提取码:1212
1. 如何让构建一个CNN模型
构建模型的过程就是对CNN原理的代码实现,我们已经了解到CNN内部包含有卷积层、池化层、全连接层等网络层,模型的构建就是对这些层的实现以及链接。
CNN的模型的实现依赖pytorch中的torch.nn模块,而torch.nn.Module
是所有模型的基类。需要注意的是,pytorch中没有“层”的概念,网络层也是基于基类torch.nn.Module
实现的。直白而言,自定义CNN模型就是自定义一个类。我们知道CNN网络层可以根据功能,分为特征提取层(块)与全连接层(块),这种划分有利于直观理解。pytorch提供了多种容器实现“划分”,即torch.nn.Sequential类、torch.nn.Modulelist类、torch.nn.ModuleDict类等。综上,可以用下图简单示意CNN模型的构建。
2. nn.Sequential类
类别 | 区别 |
---|---|
Sequential类 | 1)顺序性,各网络层之间严格按照顺序构建,我们在构建网络时,一定要注意前后网络层之间输入和输出数据之间的形状是否匹配;2)自带forward()函数:在nn.Sequetial的forward()函数里通过 for 循环依次读取每个网络层,执行前向传播运算。这使得我们我们构建的模型更加简洁。 |
Modulelist类 | 1)迭代性,常用于大量重复网络构建,通过 for 循环实现重复构建;2)内部无forward()函数。 |
ModuleDict类 | 1)索引性,常用于可选择的网络层;2)内部无forward()函数。 |
Sequential类、Modulelist类、ModuleDict类的基类也都是torch.nn.Module,构建简单的CNN模型Sequential类是比较适合的,这里只具体介绍Sequential类。Sequential类有三种“包装形式”,具体如下。
第一种
import torch.nn as nn
model = nn.Sequential(nn.Conv2d(3, 32, 5),
nn.ReLU(),
nn.Conv2d(32, 64, 5),
nn.ReLU())
print(model)
print(model[1])
'''
Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(3): ReLU()
)
ReLU()
'''
注:这样做有一个问题,每一个层是没有名称,默认的是以0、1、2、3来命名,从上面的运行结果也可以看出。
第二种
import torch.nn as nn
from collections import OrderedDict
model = nn.Sequential(OrderedDict({'conv1':nn.Conv2d(3, 32, 5),
'relu1':nn.ReLU(),
'conv2':nn.Conv2d(32, 64, 5),
'relu2':nn.ReLU()}))
print(model)
print(model[1])
'''
Sequential(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1))
(relu1): ReLU()
(conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(relu2): ReLU()
)
ReLU()
'''
注:从上面的结果中可以看出,这个时候每一个层都有了自己的名称,但是此时需要注意,我并不能够通过名称直接获取层,依然只能通过索引index,即model[2] 是正确的,model["conv2"] 是错误的。这其实是由它的定义实现的,看上面的Sequenrial定义可知,只支持index访问。
第三种
import torch.nn as nn
model = nn.Sequential()
model.add_module('conv1',nn.Conv2d(3, 32, 5))
model.add_module('relu1',nn.ReLU())
model.add_module('conv2',nn.Conv2d(32, 64, 5))
model.add_module('relu2',nn.ReLU())
print(model)
print(model[1])
'''
Sequential(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1))
(relu1): ReLU()
(conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(relu2): ReLU()
)
ReLU()
'''
注:model.add_module()函数输入的是集合,第一个是网络层名称,第二个是网络层。
补充torch.nn.Conv2d类的知识
上文中出现的nn.Conv2d
类是二维卷积类,是最常用的卷积方式。和普通的类一样,它需要先实例化再使用。让我们构建一个只有一层二维卷积的神经网络,进而理解nn.Conv2d
的使用。
import torch.nn as nn
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv2d = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=3,stride=2,padding=1)
def forward(self, x):
print(x.requires_grad)
x = self.conv2d(x)
return x
net = MyNet()
print(net.conv2d.weight) #查看初始权重
print(net.conv2d.bias) #查看初始偏置
pytorch手册中的torch.nn.Conv2d
类如下所示,前三个参数是必须要提供的:
需要注意的是,torch.nn.Conv2d
并不需要提供初始权重和偏置,这是因为在nn
模块中,pytorch对于卷积层的权重和偏置(如果需要偏置)初始化都是采用He初始化的,当然也可以手动进行初始化(这里不展开讲)。虽然pytorch自动初始化的参数,但我们可以通过torch.nn.Conv2d.weight
和torch.nn.Conv2d.bias
来查看卷积层的初始值。让我们来看一下各参数的意义:
in_channels---输入的四维张量[N, C, H, W]中的C,即输入图像的通道数(N为batch_size)。
out_channels---输出图像的通道数。在数值上它也是卷积核的种类数。
kernel_size---卷积核的尺寸,一般是3x3, 5x5这种奇数核,当核为nxn方阵时,记作kernel_size=n
。当核为nxm矩阵时,记作kernel_size=(n, m)
。
stride---卷积核移动时的步长。
padding---边缘填充。
dilation---这个参数决定了是否采用空洞卷积,默认为1(不采用)。
groups---决定了是否采用分组卷积。
bias---即是否要添加偏置参数作为可学习参数的一个,默认为True。
padding_mode---padding的模式,默认采用零填充。
3. nn.Module类
本小节内容摘自:pytorch教程之nn.Module类详解——使用Module类来自定义模型_LoveMIss-Y的博客-CSDN博客
3.1. torch.nn.Module类简介
先来简单看一它的定义:
class Module(object):
def __init__(self):
def forward(self, *input):
def add_module(self, name, module):
def cuda(self, device=None):
def cpu(self):
def __call__(self, *input, **kwargs):
def parameters(self, recurse=True):
def named_parameters(self, prefix='', recurse=True):
def children(self):
def named_children(self):
def modules(self):
def named_modules(self, memo=None, prefix=''):
def train(self, mode=True):
def eval(self):
def zero_grad(self):
def __repr__(self):
def __dir__(self):
'''
有一部分没有完全列出来
'''
我们在定义自已的网络的时候,需要继承nn.Module类,并重新实现构造函数__init__构造函数和forward这两个方法。但有一些注意技巧:
(1)一般把网络中具有可学习参数的层(如全连接层、卷积层等)放在构造函数__init__()中,当然也可以把不具有参数的层也放在里面;
(2)不具有可学习参数的层(如ReLU、dropout、BatchNormanation层)既可放在构造函数中,也可不放在构造函数中,如果不放在构造函数__init__里面,则在forward方法里面可以使用nn.functional来代替。
(3)forward方法是必须要重写的,它是实现模型的功能,实现各个层之间的连接关系的核心。
下面先看一个简单的例子。
import torch
class MyNet(torch.nn.Module):
def __init__(self):
super(MyNet, self).__init__() # 第一句话,调用父类的构造函数
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.relu1=torch.nn.ReLU()
self.max_pooling1=torch.nn.MaxPool2d(2,1)
self.conv2 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.relu2=torch.nn.ReLU()
self.max_pooling2=torch.nn.MaxPool2d(2,1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = self.relu1(x)
x = self.max_pooling1(x)
x = self.conv2(x)
x = self.relu2(x)
x = self.max_pooling2(x)
x = self.dense1(x)
x = self.dense2(x)
return x
model = MyNet()
print(model)
'''运行结果为:
MyNet(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(max_pooling1): MaxPool2d(kernel_size=2, stride=1, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu2): ReLU()
(max_pooling2): MaxPool2d(kernel_size=2, stride=1, padding=0, dilation=1, ceil_mode=False)
(dense1): Linear(in_features=288, out_features=128, bias=True)
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
'''
注意:上面的是将所有的层都放在了构造函数__init__里面,但是只是定义了一系列的层,各个层之间到底是什么连接关系并没有,而是在forward里面实现所有层的连接关系,当然这里依然是顺序连接的。下面再来看一下一个例子:
import torch
import torch.nn.functional as F
class MyNet(torch.nn.Module):
def __init__(self):
super(MyNet, self).__init__() # 第一句话,调用父类的构造函数
self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.conv2 = torch.nn.Conv2d(3, 32, 3, 1, 1)
self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
self.dense2 = torch.nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = F.max_pool2d(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x)
x = self.dense1(x)
x = self.dense2(x)
return x
model = MyNet()
print(model)
'''运行结果为:
MyNet(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(dense1): Linear(in_features=288, out_features=128, bias=True)
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
'''
注意:此时,将没有训练参数的层没有放在构造函数里面了,所以这些层就不会出现在model里面,但是运行关系是在forward里面通过nn.functional
的方法实现的(nn.Xxx和nn.functional.xxx的区别详见PyTorch 中,nn 与 nn.functional 有什么区别? - 知乎)。
总结:所有放在构造函数__init__里面的层的都是这个模型的“固有属性”。
3.2. torch.nn.Module类的多种实现
上面是为了一个简单的演示,但是Module类是非常灵活的,可以有很多灵活的实现方式,下面将一一介绍。
通过Sequential类来包装层
所谓的包装,就是将几个层包装在一起作为一个大的层(块),前面已经介绍了Sequential类的三种实现方式,这里取一种方式演示。
import torch.nn as nn
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(3, 32, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2))
self.dense_block = nn.Sequential(
nn.Linear(32 * 3 * 3, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
# 在这里实现层之间的连接关系,其实就是所谓的前向传播
def forward(self, x):
conv_out = self.conv_block(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense_block(res)
return out
model = MyNet()
print(model)
'''运行结果为:
MyNet(
(conv_block): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense_block): Sequential(
(0): Linear(in_features=288, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=10, bias=True)
)
)
'''
几个常用Module类方法
Sequenrial类实现了整数索引,故而可以使用model[index] 这样的方式获取一个曾,但是Module类并没有实现整数索引,不能够通过整数索引来获得层,那该怎么办呢?它提供了几个主要的方法,如下:
def children(self):
def named_children(self):
def modules(self):
def named_modules(self, memo=None, prefix=''):
'''
注意:这几个方法返回的都是一个Iterator迭代器,故而通过for循环访问,当然也可以通过next
'''
- model.children()方法
import torch.nn as nn
from collections import OrderedDict
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv_block=torch.nn.Sequential()
self.conv_block.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
self.conv_block.add_module("relu1",torch.nn.ReLU())
self.conv_block.add_module("pool1",torch.nn.MaxPool2d(2))
self.dense_block = torch.nn.Sequential()
self.dense_block.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
self.dense_block.add_module("relu2",torch.nn.ReLU())
self.dense_block.add_module("dense2",torch.nn.Linear(128, 10))
def forward(self, x):
conv_out = self.conv_block(x)
res = conv_out.view(conv_out.size(0), -1)
out = self.dense_block(res)
return out
model = MyNet()
for i in model.children():
print(i)
print(type(i)) # 查看每一次迭代的元素到底是什么类型,实际上是 Sequential 类型,所以有可以使用下标index索引来获取每一个Sequenrial 里面的具体层
'''运行结果为:
Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
<class 'torch.nn.modules.container.Sequential'>
Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
<class 'torch.nn.modules.container.Sequential'>
'''
- model.named_children()方法
for i in model.named_children():
print(i)
print(type(i)) # 查看每一次迭代的元素到底是什么类型,实际上是 返回一个tuple,tuple 的第一个元素是
'''运行结果为:
('conv_block', Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
))
<class 'tuple'>
('dense_block', Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
))
<class 'tuple'>
'''
总结:
- model.children()和model.named_children()方法返回的是迭代器;
- model.children()每一次迭代返回的元素是Sequential类;
- model.named_children()每一次迭代返回的元素是元组类型,元组的第一个元素是名称,第二个元素就是对应的层或者是Sequential。
- model.modules()方法
for i in model.modules():
print(i)
print("==================================================")
'''运行结果为:
MyNet(
(conv_block): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense_block): Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
)
==================================================
Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
==================================================
Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
==================================================
ReLU()
==================================================
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
==================================================
Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
==================================================
Linear(in_features=288, out_features=128, bias=True)
==================================================
ReLU()
==================================================
Linear(in_features=128, out_features=10, bias=True)
==================================================
'''
- model.named_modules()方法
for i in model.named_modules():
print(i)
print("==================================================")
'''运行结果是:
('', MyNet(
(conv_block): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense_block): Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
)
))
==================================================
('conv_block', Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU()
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
))
==================================================
('conv_block.conv1', Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))
==================================================
('conv_block.relu1', ReLU())
==================================================
('conv_block.pool1', MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))
==================================================
('dense_block', Sequential(
(dense1): Linear(in_features=288, out_features=128, bias=True)
(relu2): ReLU()
(dense2): Linear(in_features=128, out_features=10, bias=True)
))
==================================================
('dense_block.dense1', Linear(in_features=288, out_features=128, bias=True))
==================================================
('dense_block.relu2', ReLU())
==================================================
('dense_block.dense2', Linear(in_features=128, out_features=10, bias=True))
==================================================
'''
总结:
model.modules()
和model.named_modules()
方法返回的是迭代器iterator;- model的modules()方法和named_modules()方法都会将整个模型的所有构成(包括包装层、单独的层、自定义层等)由浅入深依次遍历出来,只不过modules()返回的每一个元素是直接返回的层对象本身,而named_modules()返回的每一个元素是一个元组,第一个元素是名称,第二个元素才是层对象本身。
- 如何理解children和modules之间的这种差异性。注意pytorch里面不管是模型、层、激活函数、损失函数都可以当成是Module的拓展,所以modules和named_modules会层层迭代,由浅入深,将每一个自定义块block、然后block里面的每一个层都当成是module来迭代。而children就比较直观,就表示的是所谓的“孩子”,所以没有层层迭代深入。
4. 创建一个CNN模型
import torch.nn as nn
class MyNet(nn.Module):
def __init__(self):
super(MyNet, self).__init__()
self.conv1=nn.Sequential(nn.Conv2d(3, 32, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2))
self.conv2=nn.Sequential(nn.Conv2d(32, 64, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2))
self.conv3=nn.Sequential(nn.Conv2d(64, 64, 3, 1, 1),
nn.ReLU(),
nn.MaxPool2d(2))
self.dense=nn.Sequential(nn.Linear(64*3*3, 128),
nn.ReLU(),
nn.Linear(128, 10))
def forward(self, x):
conv1_out = self.conv1(x)
conv2_out = self.conv2(conv1_out)
conv3_out = self.conv3(conv2_out)
res = conv3_out.view(conv3_out.size(0), -1)
return self.dense(res)
model=MyNet()
print(model)
'''
MyNet(
(conv1): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(conv2): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(conv3): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dense): Sequential(
(0): Linear(in_features=576, out_features=128, bias=True)
(1): ReLU()
(2): Linear(in_features=128, out_features=10, bias=True)
)
)
'''