Luogu P2822 [NOIp2016提高组]组合数问题 | 数学、二维前缀和
思路:组合数就是杨辉三角,那么我们只要构造一个杨辉三角就行了。记得要取模,不然会爆。然后,再用二维前缀和统计各种情况下组合数是k的倍数的方案数。询问时直接O(1)输出即可。
#include<iostream> #include<cstdio> #include<fstream> #include<algorithm> #include<string> #include<sstream> #include<cstring> using namespace std; int f[2005][2005],s[2005][2005]; int main() { int t=0,k=0; scanf("%d%d",&t,&k); for(int i=0;i<=2000;i++) f[i][0]=1;//初始化 for(int i=1;i<=2000;i++)//构造杨辉三角,因为组合数就是杨辉三角 for(int j=1;j<=i;j++) f[i][j]=(f[i-1][j]+f[i-1][j-1])%k;//记得取模(如果模成0就代表可以被k整除),不然会爆 for(int i=1;i<=2000;i++)//二维前缀和 for(int j=1;j<=2000;j++) { s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1];//将前面的计算结果挪过来 if(f[i][j]==0&&j<=i) s[i][j]++;//如果这个位置的数可以被k整除且这个位置是合法的,那么就加1 } for(int T=1;T<=t;T++) { int n=0,m=0; scanf("%d%d",&n,&m); printf("%d\n",s[n][m]);//直接输出 } return 0; }