hdoj6703 2019 CCPC网络选拔赛 1002 array

题意

description

You are given an array a1,a2,...,an(∀i∈[1,n],1≤ai≤n). Initially, each element of the array is **unique**.

Moreover, there are m instructions.

Each instruction is in one of the following two formats:

  1. (1,pos),indicating to change the value of apos to apos+10,000,000;
  2. (2,r,k),indicating to ask the minimum value which is not equal to any ai ( 1≤i≤r ) and **not less ** than k.

Please print all results of the instructions in format 2.

### input
The first line of the input contains an integer T(1≤T≤10), denoting the number of test cases.

In each test case, there are two integers n(1≤n≤100,000),m(1≤m≤100,000) in the first line, denoting the size of array a and the number of instructions.

In the second line, there are n distinct integers a1,a2,...,an (∀i∈[1,n],1≤ai≤n),denoting the array.
For the following m lines, each line is of format (1,t1) or (2,t2,t3).
The parameters of each instruction are generated by such way :

For instructions in format 1 , we defined pos=t1⊕LastAns . (It is promised that 1≤pos≤n)

For instructions in format 2 , we defined r=t2⊕LastAns,k=t3⊕LastAns. (It is promised that 1≤r≤n,1≤k≤n )

(Note that ⊕ means the bitwise XOR operator. )

Before the first instruction of each test case, LastAns is equal to 0 .After each instruction in format 2, LastAns will be changed to the result of that instruction.

(∑n≤510,000,∑m≤510,000 )

## 分析 题目中,共有两种操作,一种是将第k个数字+1000,0000,一种是求一个最小的、不等于ai(1 <= i <= r)的,且不小于k的数字。 > 注意 这个数字,可以不出现在array中

因为array中的数字各不相同,因此,不等于ai(1 <= i <= r),等价于 这个数字可能会出现在 ai(r + 1 <= i <= n)。
为什么是可能?因为由于第一种操作+1000,10000,会使得进行第一种操作的那个数字,无论如何都不会和ai重复(1000,0000 比 51,0000大太多了)。
所以,这个题,我们可以将主席树进行适当的修改,每次查找ai[r + 1, n]中,不小于k的最小数字。
由于本题中,array由1-n的n个数字组成,因此不用考虑数字的去重(unique),以及 离散化问题。
除了上面两种情况,还有一种情况,我们没考虑到,如果k = n (已经过异或运算),那么这个答案还有可能是 n + 1。
综上,答案一共有三种情况:

  • ai[r + 1, n] 中的某个数字 (可以用主席树求解)
  • 进行过第一种操作的某个数字 (将进行过第一种操作的数字放入set中)
  • n + 1

三个数字,求最小值即可

代码

#include <iostream>
#include <cstdio>
#include <set>
#include <algorithm>
int const maxn = 530000;
int const inf = 0x3f3f3f3f;
using namespace std;
int a[maxn], b[maxn];
int root[maxn << 5];//第几个版本的根节点编号
int lc[maxn << 5], rc[maxn << 5], sum[maxn << 5];
int sz;//节点个数
int n, m;

void build(int &rt, int l, int r) {
	rt = ++sz;
	if (l == r)	return;
	int mid = (l + r) >> 1;
	build(lc[rt], l, mid);
	build(rc[rt], mid + 1, r);
}

int update(int id, int l, int r, int pos) {
	int _id = ++sz;
	lc[_id] = lc[id], rc[_id] = rc[id], sum[_id] = sum[id] + 1;
	if (l == r)	return _id;
	int mid = (r + l) >> 1;
	if (pos <= mid)
		lc[_id] = update(lc[id], l, mid, pos);
	else
		rc[_id] = update(rc[id], mid + 1, r, pos);
	return _id;
}

//查询 不比k大的最小数字
int query(int p, int q, int l, int r, int k) {
	if (l == r)	return l;
	int x1 = sum[lc[q]] - sum[lc[p]];
	int x2 = sum[rc[q]] - sum[rc[p]];
	int mid = (l + r) >> 1;
	int ans = inf;
	if (x1 > 0 && mid >= k)
		ans = query(lc[p], lc[q], l, mid, k);
	//这个if不能写为else,因为第一个if可能无法得到结果,返回inf
	if(ans == inf && x2 > 0 && r >= k)
		ans = query(rc[p], rc[q], mid + 1, r, k);
	return ans;
}


int main() {
	int T;
	scanf("%d", &T);
	while (T--) {
		while (~scanf("%d %d", &n, &m)) {
			sz = 0;
			set<int> s;
			int lastAns = 0;
			for (int i = 1; i <= n; i++) {
				scanf("%d", &a[i]);
				b[i] = a[i];
			}
			sort(b + 1, b + n + 1);
			build(root[0], 1, n);
			for (int i = 1; i <= n; i++) {
				int pos = lower_bound(b + 1, b + n + 1, a[i]) - b;
				root[i] = update(root[i - 1], 1, n, pos);
			}
			while (m--) {
				int l;
				scanf("%d", &l);
				if (l == 1) {
					int pos = 1; // 随意初始化
					scanf("%d", &pos);
					pos ^= lastAns;
					//cout << "pos = " << pos << endl;
					s.insert(a[pos]);
				}
				else {
					int l, k;
					scanf("%d %d", &l, &k);
					l ^= lastAns;
					k ^= lastAns;
					//cout << "l = " << l << "k = " << k << endl;
					int ansPos = query(root[l - 1 + 1], root[n], 1, n, k);
					lastAns = (ansPos == inf) ? inf : b[ansPos];
					set<int>::iterator it = s.lower_bound(k);
					//
					if (it != s.end())	lastAns = min(lastAns, *it);
					lastAns = min(lastAns, n + 1);
					printf("%d\n", lastAns);
				}
			}
		}
	}
	return 0;
posted @ 2019-08-28 10:07  阳离子  阅读(233)  评论(0编辑  收藏  举报