games101_Homework7

实现完整的 Path Tracing 算法

需要修改这一个函数:

• castRay(const Ray ray, int depth)in Scene.cpp: 在其中实现 Path Tracing 算法

// Implementation of Path Tracing
Vector3f Scene::castRay(const Ray &ray, int depth) const
{
    // TO DO Implement Path Tracing Algorithm here
    // 本函数为发射一条光ray和其当前深度depth,求最终的着色点颜色值

    // 所用函数介绍:
    // Intersection intersect(const Ray& ray) const; 
    // 返回光源与BVH的交点
    // void sampleLight(Intersection &pos, float &pdf);
    // 对所有光源按面积均匀采样一个点,并将pdf修改为采样的概率密度
    // Vector3f Material::sample(const Vector3f &wi, const Vector3f &N);
    // 按照该材质的性质和给定入射方向wi与法向量N,用某种分布采样一个出射方向
    // float Material::pdf(V3f wi, V3f &wo, V3f N)
    // 给定入射wi,出射wo,法向量N,计算采样得出的该方向上的概率密度
    // Vector3f Material::eval(V3f wi, V3f &wo, V3f N)
    // 计算f_r值
    // Scene.RussianRoulette
    // PRR概率

    Intersection intersection = intersect(ray);  // 首先获取着色点位置pos

    if(intersection.happened){
        Vector3f L_dir(0.0), L_indir(0.0);

        Vector3f p = intersection.coords;
        Vector3f wo = ray.direction;        // 观测点打向着色点的方向
        Vector3f N = intersection.normal;            // 法线即为交点法线
        Material *m = intersection.m;

        // 首先是直接光照,从光源发出
        // 采样光源获取x点
        Intersection light_intersection;
        float pdf_light = 0.0;
        sampleLight(light_intersection, pdf_light);
        Vector3f x = light_intersection.coords;

        // 从p点向x点打一光线ps,方向为ws
        Vector3f ws = (x - p).normalized();
        Ray ray_px(p, ws);   //从p点加一段距离避免判断光线被自己挡住
        Intersection intersect_px = intersect(ray_px);
        // 如果光线打到的点是光源则修改L_dir
        if(intersect_px.happened && intersect_px.m->hasEmission()){
            Vector3f NN = intersect_px.normal;
            L_dir = light_intersection.emit * m->eval(wo, ws, N)
            * dotProduct(ws, N) * dotProduct(-ws, NN) / intersect_px.distance / pdf_light;
        }

        // 然后是间接光照,采用RR判断是否需要继续打光线,故不需要使用depth
        if(get_random_float() <= RussianRoulette){
            // 从p点向外打一根光线,如果有交点设为q
            Vector3f wi = m->sample(wo, N).normalized();
            Ray ray_pq(p, wi);
            Intersection intersect_q = intersect(ray_pq);
            // 如果打中且不是光源计算间接光照
            if(intersect_q.happened && !intersect_q.m->hasEmission()){
                L_indir = castRay(ray_pq, depth + 1) * m->eval(wo, wi, N)
                * dotProduct(wi, N) / m->pdf(wo, wi, N) / RussianRoulette;
            }
        }
        return m->getEmission() + L_dir + L_indir;
    }

    //如果没有交点,返回黑色
    return Vector3f(0.0);
}
View Code

ps:需要注意的是,由于框架改变、坐标系改变、通过自发光消除黑边等原因我们需要修改其他的函数

void Scene::sampleLight(Intersection &pos, float &pdf) const in Scene.cpp
void Scene::sampleLight(Intersection &pos, float &pdf) const
{
    float emit_area_sum = 0;
    for (uint32_t k = 0; k < objects.size(); ++k) {
        // 如果物体发光则为光源
        if (objects[k]->hasEmit()){
            // 发光面积累加上物体所有三角形面积
            emit_area_sum += objects[k]->getArea();
        }
    }
    float p = get_random_float() * emit_area_sum;   //随机取一块面积
    emit_area_sum = 0;
    for (uint32_t k = 0; k < objects.size(); ++k) {
        if (objects[k]->hasEmit()){
            emit_area_sum += objects[k]->getArea();
            // 如果当前所取面积和超过之前所取阈值 p,
            // 则调用MeshTriangle类的采样函数
            // 传入交点位置pos,和pdf,修改pos的发光位置和pdf值
            if (p <= emit_area_sum){
                objects[k]->Sample(pos, pdf);
                break;
            }
        }
    }
}
View Code
inline bool Bounds3::IntersectP(const Ray& ray, const Vector3f& invDir, const std::array<int, 3>& dirIsNeg) const in Bounds3.hpp
inline bool Bounds3::IntersectP(const Ray& ray, const Vector3f& invDir,
                                const std::array<int, 3>& dirIsNeg) const
{
    // invDir: ray direction(x,y,z), invDir=(1.0/x,1.0/y,1.0/z), 
    // use this because Multiply is faster that Division
    // dirIsNeg: ray direction(x,y,z), dirIsNeg=[int(x>0),
    // int(y>0),int(z>0)], use this to simplify your logic
    // TODO test if ray bound intersects

    Vector3f t_enter_xzy = (pMin - ray.origin) * invDir;
    Vector3f t_exit_xzy  = (pMax - ray.origin) * invDir;
    // 如果光线在某一个轴上的分量是负数,则对应轴上的面越大越先进入
    if(!dirIsNeg[0]) std::swap(t_enter_xzy.x, t_exit_xzy.x);
    if(!dirIsNeg[1]) std::swap(t_enter_xzy.y, t_exit_xzy.y);
    if(!dirIsNeg[2]) std::swap(t_enter_xzy.z, t_exit_xzy.z);

    float tenter = std::max(std::max(t_enter_xzy.x, t_enter_xzy.y), t_enter_xzy.z);
    float texit  = std::min(std::min(t_exit_xzy.x, t_exit_xzy.y), t_exit_xzy.z);
    
    return tenter <= texit && texit >= 0;
}
View Code
Intersection BVHAccel::getIntersection(BVHBuildNode* node, const Ray& ray) const in BVH.cpp
Intersection BVHAccel::getIntersection(BVHBuildNode* node, const Ray& ray) const
{
    Intersection res;
    // TODO Traverse the BVH to find intersection
    
    // 如果光线与改包围盒无交点,直接返回false的res
    if(!node->bounds.IntersectP(ray, ray.direction_inv, std::array<int, 3> 
    {ray.direction.x > 0, ray.direction.y > 0, ray.direction.z > 0})){
        return res;
    }
    // 如果当前节点为叶子节点,遍历node中的每一个物体使之于光线求交
    if(node->object){
        return node->object->getIntersection(ray);
    }

    // 如果当前节点的盒子与光线相交则分别递归到左右
    Intersection l = getIntersection(node->left, ray);
    Intersection r = getIntersection(node->right, ray);
    
    //如果有两个交点,返回较近的那个交点
    return l.distance <= r.distance ? l : r;
}
View Code
bool Material::hasEmission() in Material.hpp
bool Material::hasEmission() {
    // 根据Material初始化时传入的第二个Vector3f的值决定(非0即合法即为光源)
    if (m_emission.norm() > EPSILON) return true;
    else return false;
}
View Code
inline Intersection Triangle::getIntersection(Ray ray) in Triangle.hpp
inline Intersection Triangle::getIntersection(Ray ray)
{
    Intersection inter;

    if (dotProduct(ray.direction, normal) > 0)
        return inter;
    double u, v, t_tmp = 0;
    Vector3f pvec = crossProduct(ray.direction, e2);
    double det = dotProduct(e1, pvec);
    if (fabs(det) < EPSILON)
        return inter;

    double det_inv = 1. / det;
    Vector3f tvec = ray.origin - v0;
    u = dotProduct(tvec, pvec) * det_inv;
    if (u < 0 || u > 1)
        return inter;
    Vector3f qvec = crossProduct(tvec, e1);
    v = dotProduct(ray.direction, qvec) * det_inv;
    if (v < 0 || u + v > 1)
        return inter;
    t_tmp = dotProduct(e2, qvec) * det_inv;

    // TODO find ray triangle intersection
    // 若相交,则修改交点inter的数据
    if (t_tmp < 0) return inter;

    inter.happened = true;
    inter.coords = ray(t_tmp);  // 根据光照内置()运算获取交点坐标
    inter.distance = dotProduct(t_tmp * ray.direction, t_tmp * ray.direction);     // 距离平方
    inter.m = m;
    inter.obj = this;
    inter.normal = normal;

    return inter;
}
View Code

 

多线程加速:

在void Renderer::Render(const Scene& scene) in Render.cpp中,通过#pragma omp parallel for预处理指令使循环获得多线程并行处理能力

// The main render function. This where we iterate over all pixels in the image,
// generate primary rays and cast these rays into the scene. The content of the
// framebuffer is saved to a file.
void Renderer::Render(const Scene& scene)
{
    std::vector<Vector3f> framebuffer(scene.width * scene.height);

    float scale = tan(deg2rad(scene.fov * 0.5));
    float imageAspectRatio = scene.width / (float)scene.height;
    Vector3f eye_pos(278, 273, -800);
    int m = 0;

    // change the spp value to change sample ammount
    int spp = 4;
    std::cout << "SPP: " << spp << "\n";
    for (uint32_t j = 0; j < scene.height; ++j) {
        for (uint32_t i = 0; i < scene.width; ++i) {
            // generate primary ray direction
            float x = (2 * (i + 0.5) / (float)scene.width - 1) *
                      imageAspectRatio * scale;
            float y = (1 - 2 * (j + 0.5) / (float)scene.height) * scale;

            Vector3f dir = normalize(Vector3f(-x, y, 1));
            #pragma omp parallel for
            for (int k = 0; k < spp; k++){
                framebuffer[m] += scene.castRay(Ray(eye_pos, dir), 0) / spp;  
            }
            m++;
        }
        UpdateProgress(j / (float)scene.height);
    }
    UpdateProgress(1.f);

    // save framebuffer to file
    FILE* fp = fopen("binary.ppm", "wb");
    (void)fprintf(fp, "P6\n%d %d\n255\n", scene.width, scene.height);
    for (auto i = 0; i < scene.height * scene.width; ++i) {
        static unsigned char color[3];
        color[0] = (unsigned char)(255 * std::pow(clamp(0, 1, framebuffer[i].x), 0.6f));
        color[1] = (unsigned char)(255 * std::pow(clamp(0, 1, framebuffer[i].y), 0.6f));
        color[2] = (unsigned char)(255 * std::pow(clamp(0, 1, framebuffer[i].z), 0.6f));
        fwrite(color, 1, 3, fp);
    }
    fclose(fp);    
}
View Code

 

效果图

 

posted @ 2024-04-14 22:40  七星易  阅读(13)  评论(0编辑  收藏  举报