games101_Homework3
在Raster部分实现数值插值,然后实现四种不同的像素着色器
作业描述:
作业1:修改函数 rasterize_triangle(const Triangle& t) in rasterizer.cpp: 在此 处实现与作业 2 类似的插值算法,实现法向量、颜色、纹理颜色的插值。
在rasterize_triangle函数中重复上次的包围盒进行点采样,在深度测试通过之后分别对法向量、颜色、纹理颜色、视图空间坐标做插值,然后通过shader计算出像素颜色后设定其值。
//Screen space rasterization void rst::rasterizer::rasterize_triangle(const Triangle& t, const std::array<Eigen::Vector3f, 3>& view_pos) //t为经mvp变换后的顶点坐标,view_pos为mv变换后顶点在视图空间中的位置 { // TODO: From your Homework3, get the triangle rasterization code. auto v = t.toVector4(); // t.to is array<Vector4f, 3>,为三角形三个顶点坐标的齐次坐标表达 // Find out the bounding box of current triangle. float min_x, max_x, min_y, max_y; min_x = std::min(v[0].x(), std::min(v[1].x(), v[2].x())); max_x = std::max(v[0].x(), std::max(v[1].x(), v[2].x())); min_y = std::min(v[0].y(), std::min(v[1].y(), v[2].y())); max_y = std::max(v[0].y(), std::max(v[1].y(), v[2].y())); // iterate through the pixel and find if the current pixel is inside the triangle for(int x = min_x; x < max_x; ++x){ for(int y = min_y; y < max_y; ++y){ if(insideTriangle((float)x + 0.5, (float)y + 0.5, t.v)){ // If so, use the following code to get the interpolated z value. // TODO: Inside your rasterization loop: // * v[i].w() is the vertex view space depth value z. // * Z is interpolated view space depth for the current pixel // * zp is depth between zNear and zFar, used for z-buffer auto[alpha, beta, gamma] = computeBarycentric2D(x, y, t.v); //计算(x,y)点的重心坐标 float Z = 1.0 / (alpha / v[0].w() + beta / v[1].w() + gamma / v[2].w()); //Z是当前像素的视图空间深度(插值),v[i].w()是顶点的视图空间深度值 float zp = alpha * v[0].z() / v[0].w() + beta * v[1].z() / v[1].w() + gamma * v[2].z() / v[2].w(); zp *= Z; //zp是nf之间的深度 if(zp < depth_buf[get_index(x, y)]){ // set the z_buffer depth_buf[get_index(x, y)] = zp; // TODO: Interpolate the attributes: // auto interpolated_color // auto interpolated_normal // auto interpolated_texcoords // auto interpolated_shadingcoords //着色点在 // Use: fragment_shader_payload payload( interpolated_color, interpolated_normal.normalized(), interpolated_texcoords, texture ? &*texture : nullptr); // Use: payload.view_pos = interpolated_shadingcoords; // Use: Instead of passing the triangle's color directly to the frame buffer, pass the color to the shaders first to get the final color; // Use: auto pixel_color = fragment_shader(payload); // 调用准备好的interpolate()函数获取这些属性的插值 auto interpolated_color = interpolate(alpha, beta, gamma, t.color[0], t.color[1], t.color[2], 1); //颜色 auto interpolated_normal = interpolate(alpha, beta, gamma, t.normal[0], t.normal[1], t.normal[2], 1); //法向量 auto interpolated_texcoords = interpolate(alpha, beta, gamma, t.tex_coords[0], t.tex_coords[1], t.tex_coords[2], 1); //纹理坐标 auto interpolated_shadingcoords = interpolate(alpha, beta, gamma, view_pos[0], view_pos[1], view_pos[2], 1); //着色点在mv变换后可视空间的真实坐标 fragment_shader_payload payload(interpolated_color, interpolated_normal.normalized(), interpolated_texcoords, texture ? &*texture : nullptr); payload.view_pos = interpolated_shadingcoords; auto pixel_color = fragment_shader(payload); //调用我们设置的fragment_shader进行点的像素的着色 set_pixel(Vector2i(x, y), pixel_color); //调用写好的set_pixel函数写入framebuffer } } } } }
注:本次作业的insideTriangle依然需要修改传入接口为 static bool insideTriangle(float x, float y, const Vector4f* _v)
作业2:修改函数 phong_fragment_shader() in main.cpp: 实现 Blinn-Phong 模型计 算 Fragment Color.
Eigen::Vector3f phong_fragment_shader(const fragment_shader_payload& payload) { Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005); Eigen::Vector3f kd = payload.color; Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937); auto l1 = light{{20, 20, 20}, {500, 500, 500}}; auto l2 = light{{-20, 20, 0}, {500, 500, 500}}; std::vector<light> lights = {l1, l2}; Eigen::Vector3f amb_light_intensity{10, 10, 10}; Eigen::Vector3f eye_pos{0, 0, 10}; float p = 150; Eigen::Vector3f color = payload.color; Eigen::Vector3f point = payload.view_pos; Eigen::Vector3f normal = payload.normal; Eigen::Vector3f result_color = {0, 0, 0}; for (auto& light : lights) { // TODO: For each light source in the code, calculate what the *ambient*, *diffuse*, and *specular* // components are. Then, accumulate that result on the *result_color* object. // L = (Ka * Ia) + (Kd * I/r^2 * max(0, n·l)) + (Ks * (I / r^2) * max(0, n · h)^p) // 光照方向 Eigen::Vector3f light_direc = (light.position - point).normalized(); // 视线方向 Eigen::Vector3f eye_direc = (eye_pos - point).normalized(); // 半程向量 Eigen::Vector3f half_vector = (light_direc + eye_direc).normalized(); // 距离的平方 float R2 = (light.position - point).squaredNorm(); // 环境光 auto ambient = ka.cwiseProduct(amb_light_intensity); // 漫反射 auto diffuse = kd.cwiseProduct(light.intensity / R2) * std::max(0.0f, normal.dot(light_direc)) ; // 高光 auto specular = ks.cwiseProduct(light.intensity / R2) * std::pow(std::max(0.0f, normal.dot(half_vector)), p); result_color += (ambient + diffuse + specular); } return result_color * 255.f; }
作业3:修改函数 texture_fragment_shader() in main.cpp: 在实现 Blinn-Phong 的基础上,将纹理颜色视为公式中的 kd,实现 Texture Shading Fragment Shader.
Eigen::Vector3f texture_fragment_shader(const fragment_shader_payload& payload) { Eigen::Vector3f return_color = {0, 0, 0}; if (payload.texture) { // TODO: Get the texture value at the texture coordinates of the current fragment return_color = payload.texture->getColor(payload.tex_coords[0], payload.tex_coords[1]); } Eigen::Vector3f texture_color; texture_color << return_color.x(), return_color.y(), return_color.z(); Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005); Eigen::Vector3f kd = texture_color / 255.f; Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937); auto l1 = light{{20, 20, 20}, {500, 500, 500}}; auto l2 = light{{-20, 20, 0}, {500, 500, 500}}; std::vector<light> lights = {l1, l2}; Eigen::Vector3f amb_light_intensity{10, 10, 10}; Eigen::Vector3f eye_pos{0, 0, 10}; float p = 150; Eigen::Vector3f color = texture_color; Eigen::Vector3f point = payload.view_pos; Eigen::Vector3f normal = payload.normal; Eigen::Vector3f result_color = {0, 0, 0}; for (auto& light : lights) { // TODO: For each light source in the code, calculate what the *ambient*, *diffuse*, and *specular* // components are. Then, accumulate that result on the *result_color* object. // L = (Ka * Ia) + (Kd * I/r^2 * max(0, n·l)) + (Ks * (I / r^2) * max(0, n · h)^p) // 光照方向 Eigen::Vector3f light_direc = (light.position - point).normalized(); // 视线方向 Eigen::Vector3f eye_direc = (eye_pos - point).normalized(); // 半程向量 Eigen::Vector3f half_vector = (light_direc + eye_direc).normalized(); // 距离的平方 float R2 = (light.position - point).squaredNorm(); // 环境光 auto ambient = ka.cwiseProduct(amb_light_intensity); // 漫反射 auto diffuse = kd.cwiseProduct(light.intensity / R2) * std::max(0.0f, normal.dot(light_direc)) ; // 高光 auto specular = ks.cwiseProduct(light.intensity / R2) * std::pow(std::max(0.0f, normal.dot(half_vector)), p); result_color += (ambient + diffuse + specular); } return result_color * 255.f; }
作业4:修改函数 bump_fragment_shader() in main.cpp: 在实现 Blinn-Phong 的 基础上,仔细阅读该函数中的注释,实现 Bump mapping,将新的法线设置为颜色值。
Eigen::Vector3f bump_fragment_shader(const fragment_shader_payload& payload) //凹凸贴图 { Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005); Eigen::Vector3f kd = payload.color; Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937); auto l1 = light{{20, 20, 20}, {500, 500, 500}}; auto l2 = light{{-20, 20, 0}, {500, 500, 500}}; std::vector<light> lights = {l1, l2}; Eigen::Vector3f amb_light_intensity{10, 10, 10}; Eigen::Vector3f eye_pos{0, 0, 10}; float p = 150; Eigen::Vector3f color = payload.color; Eigen::Vector3f point = payload.view_pos; Eigen::Vector3f normal = payload.normal; float kh = 0.2, kn = 0.1; // TODO: Implement bump mapping here // Let n = normal = (x, y, z) // Vector t = (x*y/sqrt(x*x+z*z),sqrt(x*x+z*z),z*y/sqrt(x*x+z*z)) // Vector b = n cross product t //叉积 // Matrix TBN = [t b n] // dU = kh * kn * (h(u+1/w,v)-h(u,v)) // dV = kh * kn * (h(u,v+1/h)-h(u,v)) // Vector ln = (-dU, -dV, 1) // Normal n = normalize(TBN * ln) auto n = normal; auto x = n.x(); auto y = n.y(); auto z = n.z(); Vector3f t(x*y/sqrt(x*x+z*z),sqrt(x*x+z*z),z*y/sqrt(x*x+z*z)); Vector3f b = n.cross(t); auto u = payload.tex_coords.x(); //在切线空间中的x坐标 auto v = payload.tex_coords.y(); //在切线空间中的y坐标 Matrix3f TBN; TBN << t.x(), t.y(), t.z(), b.x(), b.y(), b.z(), n.x(), n.y(), n.z(); // 纹理实际宽度 auto w = payload.texture->width; // 纹理实际高度 auto h = payload.texture->height; // U、V方向的切线(导数) auto dU = kh * kn * (payload.texture->getColor(u + 1.0f / w, v).norm() - payload.texture->getColor(u,v).norm()); auto dV = kh * kn * (payload.texture->getColor(u, v + 1.0f / h).norm() - payload.texture->getColor(u,v).norm()); // 当前点的法向量 Vector3f ln(-dU, -dV, 1); //使用tbn矩阵将法线变换到世界空间中 normal = (TBN * ln).normalized(); // Eigen::Vector3f result_color = {0, 0, 0}; result_color = normal; return result_color * 255.f; }
作业5:修改函数 displacement_fragment_shader() in main.cpp: 在实现 Bump mapping 的基础上,实现 displacement mapping.。将实际改变点的位置。
Eigen::Vector3f displacement_fragment_shader(const fragment_shader_payload& payload) //位移贴图像素着色 { Eigen::Vector3f ka = Eigen::Vector3f(0.005, 0.005, 0.005); Eigen::Vector3f kd = payload.color; Eigen::Vector3f ks = Eigen::Vector3f(0.7937, 0.7937, 0.7937); auto l1 = light{{20, 20, 20}, {500, 500, 500}}; auto l2 = light{{-20, 20, 0}, {500, 500, 500}}; std::vector<light> lights = {l1, l2}; Eigen::Vector3f amb_light_intensity{10, 10, 10}; Eigen::Vector3f eye_pos{0, 0, 10}; float p = 150; Eigen::Vector3f color = payload.color; Eigen::Vector3f point = payload.view_pos; Eigen::Vector3f normal = payload.normal; float kh = 0.2, kn = 0.1; // TODO: Implement displacement mapping here // Let n = normal = (x, y, z) // Vector t = (x*y/sqrt(x*x+z*z),sqrt(x*x+z*z),z*y/sqrt(x*x+z*z)) // Vector b = n cross product t // Matrix TBN = [t b n] // dU = kh * kn * (h(u+1/w,v)-h(u,v)) // dV = kh * kn * (h(u,v+1/h)-h(u,v)) // Vector ln = (-dU, -dV, 1) // Position p = p + kn * n * h(u,v) // Normal n = normalize(TBN * ln) auto n = normal; auto x = n.x(); auto y = n.y(); auto z = n.z(); Vector3f t(x*y/sqrt(x*x+z*z),sqrt(x*x+z*z),z*y/sqrt(x*x+z*z)); Vector3f b = n.cross(t); auto u = payload.tex_coords.x(); //在切线空间中的x坐标 auto v = payload.tex_coords.y(); //在切线空间中的y坐标 Matrix3f TBN; TBN << t.x(), t.y(), t.z(), b.x(), b.y(), b.z(), n.x(), n.y(), n.z(); auto w = payload.texture->width; auto h = payload.texture->height; auto dU = kh * kn * (payload.texture->getColor(u + 1.0f / w, v).norm() - payload.texture->getColor(u,v).norm()); auto dV = kh * kn * (payload.texture->getColor(u, v + 1.0f / h).norm() - payload.texture->getColor(u,v).norm()); Vector3f ln(-dU, -dV, 1); // 计算当前点新的位置,产生位移 point += (kn * normal * payload.texture->getColor(u, v).norm()); // 计算新的法线 normal = (TBN * ln).normalized(); Eigen::Vector3f result_color = {0, 0, 0}; for (auto& light : lights) { // TODO: For each light source in the code, calculate what the *ambient*, *diffuse*, and *specular* // components are. Then, accumulate that result on the *result_color* object. // L = (Ka * Ia) + (Kd * I/r^2 * max(0, n·l)) + (Ks * (I / r^2) * max(0, n · h)^p) // 光照方向 Eigen::Vector3f light_direc = (light.position - point).normalized(); // 视线方向 Eigen::Vector3f eye_direc = (eye_pos - point).normalized(); // 半程向量 Eigen::Vector3f half_vector = (light_direc + eye_direc).normalized(); // 距离的平方 float R2 = (light.position - point).squaredNorm(); // 环境光 auto ambient = ka.cwiseProduct(amb_light_intensity); // 漫反射 auto diffuse = kd.cwiseProduct(light.intensity / R2) * std::max(0.0f, normal.dot(light_direc)) ; // 高光 auto specular = ks.cwiseProduct(light.intensity / R2) * std::pow(std::max(0.0f, normal.dot(half_vector)), p); result_color += (ambient + diffuse + specular); } return result_color * 255.f; }