POJ 1850 Code(找规律)
Code
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 7913 | Accepted: 3709 |
Description
Transmitting and memorizing information is a task that requires different coding systems for the best use of the available space. A well known system is that one where a number is associated to a character sequence. It is considered that the words are made only of small characters of the English alphabet a,b,c, ..., z (26 characters). From all these words we consider only those whose letters are in lexigraphical order (each character is smaller than the next character).
The coding system works like this:
• The words are arranged in the increasing order of their length.
• The words with the same length are arranged in lexicographical order (the order from the dictionary).
• We codify these words by their numbering, starting with a, as follows:
a - 1
b - 2
...
z - 26
ab - 27
...
az - 51
bc - 52
...
vwxyz - 83681
...
Specify for a given word if it can be codified according to this coding system. For the affirmative case specify its code.
The coding system works like this:
• The words are arranged in the increasing order of their length.
• The words with the same length are arranged in lexicographical order (the order from the dictionary).
• We codify these words by their numbering, starting with a, as follows:
a - 1
b - 2
...
z - 26
ab - 27
...
az - 51
bc - 52
...
vwxyz - 83681
...
Specify for a given word if it can be codified according to this coding system. For the affirmative case specify its code.
Input
The only line contains a word. There are some constraints:
• The word is maximum 10 letters length
• The English alphabet has 26 characters.
• The word is maximum 10 letters length
• The English alphabet has 26 characters.
Output
The output will contain the code of the given word, or 0 if the word can not be codified.
Sample Input
bf
//首先观察规律
1+1.....1
+ (25+...+1)
+ ((24+..+1) + (23+..+1)+..+1)
+
[(24+..+1) + (23+..+1)+..+1)]+[(23+..+1)+..+1)]+...[1]
+....
//所以我维护了一个num[10][27]的数组
for(i=26;i>n;i--) { sum+=num[n-1][i]; num[n][i]=sum; }
num[i]中的所有数字相加 就是 代表 第i层完成之后的编号:
举例:bcd
这说明 前面的a开头的肯定完整了 所以这时候就是需要num[0]+num[1]所有元素的和 +num[2][1](代表三个字符的以a开头的所有数量) =bcd=26+325+300=651 然后加上bcd自己 就是652
这只是第一层上面的字母对于a偏移了 ,如果 第n层对第n-1层偏移的话 如
aef e对b偏移了 那么这个怎么算了
我们可以忽略a 因为这里a对其不产生影响,唯一的影响是对e的起始的偏移位置的影响
所以我们可以用num[2][b-'a'+数组中起始有值的位置]+num[2][c-'a'+数组中起始有值的为位置]+....
/* 26 + (25+...+1) (25*24/2 +24*23/2 +...) + ( (24*23/2 +...) +(23*22/2+.....) ) */ #include<stdio.h> #include<string.h> __int64 num[10][27]; void dfs(__int64 n) { __int64 i; if(n>10) return ; __int64 sum=0; for(i=26;i>n;i--) { sum+=num[n-1][i]; num[n][i]=sum; } dfs(n+1); } int main(void) { __int64 i,j; char str[15]; for(i=0;i<27;i++) num[0][i]=1; dfs(1); while(scanf("%s",&str[1])!=EOF) { __int64 len=strlen(str)-1; __int64 tol=0; //除掉不满足情况的 for(i=2;i<=len;i++) { if(str[i]<=str[i-1]){ printf("0\n"); return 0;} } for(i=0;i<len-1;i++)//先算总层 { for(j=26;j>=i;j--) { tol+=num[i][j]; } } str[0]='a'-2;//起始的时候处理一下 for(j=len;j>0;j--){ for(i=0;i<str[len-j+1]-(str[len-j]+1);i++) { tol+=num[j-1][j+i+(str[len-j]+1-'a')]; } } printf("%I64d\n",tol); } return 0; }
ps:woshi1993