用Gzip数据压缩方式优化redis大对象缓存

用Gzip数据压缩方式优化redis大对象缓存

现象

1,业务需要,存入redis中的缓存数据过大,占用了10+G的内存,内存作为重要资源,需要优化一下大对象缓存

选择GZIP的原因

1,参照如下图,gzip的压缩比和压缩效率都还算中上,重要的是, 当我们用gzip压缩,我们用http返回业务数据的时候,直接以gzip方式返回,减少解压开销
2,减少redis内存占用,减少网络带宽

文中以一个445M的文件对常见的压缩方式进行了比较

初步探索

相关代码

方案一:做序列化,再做Gzip压缩,再存入redis,获取时,反向操作

1,弊端就是需要解压,反序列化,增加了开销
2,当下只能用jedis,才能存储byte[] 二进制数据数据,但是jedis是线程不安全的,且项目中已经有了lecture作为redis client,不好再引入jedis
3,redis还只能存储gzip压缩之后的二进制数据,否则会解析不出来,lecture的API又没有操作二进制的方法,如果二进制转string,就会发生string得不到原二进制数据


import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import lombok.extern.slf4j.Slf4j;
import org.apache.tomcat.util.http.fileupload.IOUtils;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.JdkSerializationRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.SerializationException;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;

@Slf4j
public class CompressRedis extends JdkSerializationRedisSerializer {

    public static final int BUFFER_SIZE = 4096;
    // 序列化器
    private RedisSerializer<Object> innerSerializer;

    public CompressRedis() {
        this.innerSerializer = getValueSerializer();
    }

    @Override
    public byte[] serialize(Object graph) throws SerializationException {
        if (graph == null) {
            return new byte[0];
        }
        ByteArrayOutputStream bos = null;
        GZIPOutputStream gzip = null;
        try {
            // 先序列化
            byte[] bytes = innerSerializer.serialize(graph);
            bos = new ByteArrayOutputStream();
            gzip = new GZIPOutputStream(bos);
            // 再压缩
            gzip.write(bytes);
            gzip.finish();
            byte[] result = bos.toByteArray();
            return result;
        } catch (Exception e) {
            throw new SerializationException("Gzip Serialization Error", e);
        } finally {
            IOUtils.closeQuietly(bos);
            IOUtils.closeQuietly(gzip);
        }
    }

    @Override
    public Object deserialize(byte[] bytes) throws SerializationException {
        if (bytes == null || bytes.length == 0) {
            return null;
        }
        ByteArrayOutputStream bos = null;
        ByteArrayInputStream bis = null;
        GZIPInputStream gzip = null;
        try {
            bos = new ByteArrayOutputStream();
            bis = new ByteArrayInputStream(bytes);
            gzip = new GZIPInputStream(bis);
            byte[] buff = new byte[BUFFER_SIZE];
            int n;
            // 先解压
            while ((n = gzip.read(buff, 0, BUFFER_SIZE)) > 0) {
                bos.write(buff, 0, n);
            }
            // 再反序列化
            Object result = innerSerializer.deserialize(bos.toByteArray());
            return result;
        } catch (Exception e) {
            throw new SerializationException("Gzip deserizelie error", e);
        } finally {
            IOUtils.closeQuietly(bos);
            IOUtils.closeQuietly(bis);
            IOUtils.closeQuietly(gzip);
        }
    }

    private static RedisSerializer getValueSerializer() {
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        return jackson2JsonRedisSerializer;
    }

}

2,jedis存储二进制gzip数据

public byte[] getCompressAndSave(String word) {
		String key= SimilarFormResourceKeyCompress+"::"+word;
		Jedis jedis=new Jedis();
		byte[] compress=jedis.get(key.getBytes());

		if(compress==null) {
			SimilarForm similarForm = getNebulaSimilarForm(word);
			Result result = Result.success(similarForm);
			String content = JSONObject.toJSONString(result);
			compress = CompressUtil.compress(content);


			jedis.set(key.getBytes(), compress);
		}

		return compress;
	}



解决方案:完整应答对象(Result{code,msg,data})转json字符串,再Gzip压缩,获取时,直接作为http Gzip数据流应答

1,优势则是不用额外解压和反序列化
2,直接作为http gzip数据流应答,减少网络带宽,提升效率

设计基于lecture redis client的gzip缓存方法

1,原因:redis还只能存储gzip压缩之后的二进制数据,否则会解析不出来,lecture的API又没有操作二进制的方法,如果二进制转string,就会发生string得不到原二进制数据
2,解决办法就是,再设计一个RedisCompressObj,只用来存储byte[]数据,包装一层,以避免直接操作二进制数组

@Data
public class RedisCompressObj implements Serializable {
	private static final long serialVersionUID = 1849342735494672132L;

	private byte[] bytes;
}

1,完整应答对象(Result{code,msg,data})转json字符串,再Gzip压缩,再作为RedisCompressObj存入redis,不会破坏gzip二进制数据,又可以统一用@Cacheable

@Cacheable(value =SimilarFormResourceKeyCompress, key = "#word", unless = "#result == null")
	public RedisCompressObj getResource(String word) {
		SimilarForm similarForm = getNebulaSimilarForm(word);
		Result result = Result.success(nebulaSimilarForm);
		String content = JSONObject.toJSONString(result);
		byte[] compress = CompressUtil.compress(content);
		RedisCompressObj redisCompressObj = new RedisCompressObj();
		redisCompressObj.setBytes(compress);

		return redisCompressObj;
	}

2,json字符串,直接Gzip压缩

public class CompressUtil {
	
	public static byte[] compress(String content){
		if (StringUtils.isEmpty(content)) {
			return null;
		}
		ByteArrayOutputStream bos = null;
		GZIPOutputStream gzip = null;
		try {

			bos = new ByteArrayOutputStream();
			gzip = new GZIPOutputStream(bos);
			// 再压缩
			gzip.write(content.getBytes());
			gzip.finish();
			return bos.toByteArray();
		} catch (Exception e) {
			throw new SerializationException("Gzip Serialization Error", e);
		} finally {
			IOUtils.closeQuietly(bos);
			IOUtils.closeQuietly(gzip);
		}
    }
}

作为http gzip数据流直接应答,减少带宽

public ResponseEntity<byte[]> getWordCompress(@RequestParam(value = "word") String word) {
		String uid = getCurrentUserId();
		RedisCompressObj redisCompressObj = similarFormHandle.getResource(word, uid, true);

		byte[] json = redisCompressObj.getBytes();
		MultiValueMap<String, String> headers = new HttpHeaders();
		headers.add("Content-Encoding", "gzip");
		headers.add("Content-Type", "application/json");

		ResponseEntity<byte[]> rspEntity = new ResponseEntity<byte[]>(json, headers, HttpStatus.OK);

		return rspEntity;
	}

对方案二做测试

1,工具postman,用来查看接口应答,有gzip和没有gzip之间的应答数据量情况
2,redis桌面工具Another-Redis-Desktop,用来查看在redis中,gzip压缩之后和没有压缩之后所占内存情况

资源 不压缩http应答 压缩http应答 不压缩redis内存占用 压缩redis内存占用 备注
boot 749KB 29KB 1.2MB 39.5KB http接口应答优化96.2%,redis内存占用优化 96.8%
mistreat 199.5KB 13.9KB 487.5KB 14K http接口应答优化93.1%,redis内存占用优化 97.2%
Monday 55.7KB 5.1KB 134KB 6.7KB http接口应答优化90.9%,redis内存占用优化 95%
allocation 4.22MB 252.6KB 10.3MB 336.6KB http接口应答优化94%,redis内存占用优化 96.8%
adoption 659.5KB 35.4KB 1.59MB 46.9KB http接口应答优化94.7%,redis内存占用优化 97.2%

结论

1,用gzip做压缩优化内存,是当前几种压缩算法中算法压缩比和加压缩性能,属于中上,但是很适合http,可以避免解压和反序列开销
2,基于lecture redis client不能操作二进制数据,但是gzip二进制数据不能转string,会反转失败
3,基于lecture redis client和@Cacheable结合的缓存机制,会把对象序列化成json(项目中配置的是jackson2JsonRedisSerializer),并还会额外保存引用的对象,利于反序列化成对象,多占用了内存
4,用redis缓存RedisCompressObj(byte[]),是当前方案中,比较适用的方式,不会出现乱码,格式转换失败的异常
5,用gzip压缩大对象优化redis缓存和接口流量,效果都达到90%以上

posted on 2022-03-02 15:46  woshare  阅读(4722)  评论(0编辑  收藏  举报