(性能测试笔记)逻辑IO和物理IO的区别

IO性能对于一个系统的影响是至关重要的。 一个系统经过多项优化以后,瓶颈往往落在数据库;而数据库经过多种优化以后,瓶颈最终会落到IO。而IO性能的发展,明显落后于CPU的发展。Memchached也好,NoSql也好,这些流行技术的背后都在直接或者间接地回避IO瓶颈,从而提高系统性能。

 

IO系统的分层:

 

  1.   三层结构

上图层次比较多,但总的就是三部分。磁盘(存储)、VM(卷管理)和文件系统。专有名词不好理解,打个比方说:磁盘就相当于一块待用的空地;LVM相当于空地上的围墙(把空地划分成多个部分);文件系统则相当于每块空地上建的楼房(决定了有多少房间、房屋编号如何,能容纳多少人住);而房子里面住的人,则相当于系统里面存的数据。

 

  • 文件系统—数据如何存放?

 

对应了上图的File System和Buffer Cache。

File System(文件系统):解决了空间管理的问题,即:数据如何存放、读取。

Buffer Cache:解决数据缓冲的问题。对读,进行cache,即:缓存经常要用到的数据;对写,进行buffer,缓冲一定数据以后,一次性进行写入。

 

  • VM—磁盘空间不足了怎么办?

 

对应上图的Vol Mgmt。

VM其实跟IO没有必然联系。他是处于文件系统和磁盘(存储)中间的一层。VM屏蔽了底层磁盘对上层文件系统的影响。当没有VM的时候,文件系统直接使用存储上的地址空间,因此文件系统直接受限于物理硬盘,这时如果发生磁盘空间不足的情况,对应用而言将是一场噩梦,不得不新增硬盘,然后重新进行数据复制。而VM则可以实现动态扩展,而对文件系统没有影响。另外,VM也可以把多个磁盘合并成一个磁盘,对文件系统呈现统一的地址空间,这个特性的杀伤力不言而喻。

  • 存储—数据放在哪儿?如何访问?如何提高IO速度?

 

对应上图的Device Driver、IO Channel和Disk Device

数据最终会放在这里,因此,效率、数据安全、容灾是这里需要考虑的问题。而提高存储的性能,则可以直接提高物理IO的性能

 

    2. Logical IO vs Physical IO

 

逻辑IO是操作系统发起的IO,这个数据可能会放在磁盘上,也可能会放在内存(文件系统的Cache)里。

物理IO是设备驱动发起的IO,这个数据最终会落在磁盘上。

      逻辑IO和物理IO不是一一对应的。

 

这部分的东西在网络编程经常能看到,不过在所有IO处理中都是类似的。

IO请求的两个阶段:

       等待资源阶段:IO请求一般需要请求特殊的资源(如磁盘、RAM、文件),当资源被上一个使用者使用没有被释放时,IO请求就会被阻塞,直到能够使用这个资源。

       使用资源阶段:真正进行数据接收和发生。

       举例说就是排队和服务。

 在等待数据阶段,IO分为阻塞IO和非阻塞IO。

       阻塞IO:资源不可用时,IO请求一直阻塞,直到反馈结果(有数据或超时)。

       非阻塞IO:资源不可用时,IO请求离开返回,返回数据标识资源不可用

 在使用资源阶段,IO分为同步IO和异步IO。

       同步IO:应用阻塞在发送或接收数据的状态,直到数据成功传输或返回失败。

       异步IO:应用发送或接收数据后立刻返回,数据写入OS缓存,由OS完成数据发送或接收,并返回成功或失败的信息给应用。

 

 

按照Unix的5个IO模型划分

 

  • 阻塞IO
  • 非阻塞IO
  • IO复用
  • 信号驱动的IO
  • 异步IO

从性能上看,异步IO的性能无疑是最好的。

 

各种IO的特点

  • 阻塞IO:使用简单,但随之而来的问题就是会形成阻塞,需要独立线程配合,而这些线程在大多数时候都是没有进行运算的。Java的BIO使用这种方式,问题带来的问题很明显,一个Socket需要一个独立的线程,因此,会造成线程膨胀。
  • 非阻塞IO:采用轮询方式,不会形成线程的阻塞。Java的NIO使用这种方式,对比BIO的优势很明显,可以使用一个线程进行所有Socket的监听(select)。大大减少了线程数。

 

  • 同步IO:同步IO保证一个IO操作结束之后才会返回,因此同步IO效率会低一些,但是对应用来说,编程方式会简单。Java的BIO和NIO都是使用这种方式进行数据处理。
  • 异步IO:由于异步IO请求只是写入了缓存,从缓存到硬盘是否成功不可知,因此异步IO相当于把一个IO拆成了两部分,一是发起请求,二是获取处理结果。因此,对应用来说增加了复杂性。但是异步IO的性能是所有很好的,而且异步的思想贯穿了IT系统放放面面。

 

转载:https://blog.csdn.net/lileizhang/article/details/20623415

posted @ 2021-04-01 16:50  茫茫人海中的一颗沙尘  阅读(550)  评论(0编辑  收藏  举报