摘要:
1 IPv6与IPv4互通技术出现的背景及现状
随着Internet的日益膨胀,现有的IPv4地址已经十分紧缺,虽然使用分配临时IPv4地址或网络地址翻译(NAT)等地址使用技术,在一定程度上缓解了IPv4地址不足的状况,但同时也增加了地址解析和处理方面的开销,导致某些高层应用失效,而且仍然无法回避IPv4地址即将被分配殆尽这个问题。采用长度为128 b IP地址的IPv6协议,彻底解决了IPv4地址不足的难题,并且在地址容量、安全性、网络管理、移动性以及服务质量等方面有明显的改进,是下一代互联网络协议采用的核心标准之一。IPv6与IPv4不兼容,但他同所有其他的TCP/IP协议族中的协议兼容,即IPv6完全可以取代IPv4。
在IPv6成为主流协议之前,首先使用IPv6协议栈的网络希望能与当前仍被IPv4支撑着的Internet进行正常通信,因此必须开发出 IPv4/IPv6互通技术以保证IPv4能够平稳过渡到IPv6。此外,互通技术应该对信息传递做到高效无缝。国际上IETF组建了专门的 NGTRANS工作组开展对于IPv4/IPv6过渡问题和高效 阅读全文
摘要:
IPsec是给IP和上层协议提供安全的IP协议扩展。最初是为IPv6标准而开发的,后来返过来又支持IPv4。RFC2401描述了IPsec的体系。下面简单介绍一下IPsec。
IPsec使用两个不同的协议——AH和ESP来确保通信的认证、完整性和机密性。它既可以保护整个IP数据报也可以只保护上层协议。适当的模式称为:隧道模式和传送模式。在隧道模式下,IP数据报被IPsec协议完全加密成新的数据报;在传送模式下,仅仅是有效负荷被IPsec协议将IPsec头插入 IP头和上层协议头之间来搬运(见图1)。
图1. IPsec 隧道模式和传送模式
为保护IP数据报的完整性,IPsec协议使用了“散列信息认证代码”(HMAC:hash message authentication codes)。为了得到这个“散列信息认证代码”,IPsec 使用了像MD5和SHA这样的散列算法根据一个密钥和数据报的内容来生成一个“散列”。这个“散列信息认证代码”包含在IPsec协议头并且数据包接受者可以检查“散列信息认证代码”(当然前提是可以访问密钥)。 阅读全文
摘要:
现行的IPv4自1981年RFC 791标准发布以来并没有多大的改变。事实证明,IPv4具有相当强盛的生命力,易于实现且互操作性良好,经受住了从早期小规模互联网络扩展到如今全球范围Internet应用的考验。所有这一切都应归功于IPv4最初的优良设计。 阅读全文
摘要:
http://www.cnblogs.com/BryanChow/archive/2007/07/19/824504.html 阅读全文