LeetCode | 0222. 完全二叉树的节点个数【Python】
Problem
Given a complete binary tree, count the number of nodes.
Note:
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2^h nodes inclusive at the last level h.
Example:
Input:
1
/ \
2 3
/ \ /
4 5 6
Output: 6
问题
给出一个完全二叉树,求出该树的节点个数。
说明:
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2^h 个节点。
示例:
输入:
1
/ \
2 3
/ \ /
4 5 6
输出: 6
思路
中序遍历
普通二叉树:遍历一遍左右子树
满二叉树:节点总数与高度呈指数关系
完全二叉树:结合普通二叉树与满二叉树
时间复杂度
时间复杂度是 O(logN*logN)
因为一棵完全二叉树中,必存在一棵子树是满二叉树。因此,肯定会触发 heightleft == heightright 条件,所以递归深度就是树的高度,时间复杂度是 O(logN)。每次递归就是 while 循环,时间复杂度也是 O(logN),总体时间复杂度就是 O(logN*logN)。
Python3 代码
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def countNodes(self, root: TreeNode) -> int:
l = TreeNode(None)
l = root
r = TreeNode(None)
r = root
heightleft, heightright = 0, 0 # 记录左右子树的高度
while l != None:
l = l.left
heightleft += 1
while r != None:
r = r.right
heightright += 1
# 如果左右子树高度相同,则是一棵满二叉树
if heightleft == heightright:
return 2**heightleft - 1
# 如果左右子树高度不相同,则是按普通二叉树计算
return 1 + self.countNodes(root.left) + self.countNodes(root.right)
GitHub 链接
最怕一生碌碌无为,还说平凡难能可贵。