LeetCode | 1013. Partition Array Into Three Parts With Equal Sum将数组分成和相等的三个部分【Python】
LeetCode 1013. Partition Array Into Three Parts With Equal Sum将数组分成和相等的三个部分【Easy】【Python】【双指针】
Problem
Given an array A
of integers, return true
if and only if we can partition the array into three non-empty parts with equal sums.
Formally, we can partition the array if we can find indexes i+1 < j
with (A[0] + A[1] + ... + A[i] == A[i+1] + A[i+2] + ... + A[j-1] == A[j] + A[j-1] + ... + A[A.length - 1])
Example 1:
Input: A = [0,2,1,-6,6,-7,9,1,2,0,1]
Output: true
Explanation: 0 + 2 + 1 = -6 + 6 - 7 + 9 + 1 = 2 + 0 + 1
Example 2:
Input: A = [0,2,1,-6,6,7,9,-1,2,0,1]
Output: false
Example 3:
Input: A = [3,3,6,5,-2,2,5,1,-9,4]
Output: true
Explanation: 3 + 3 = 6 = 5 - 2 + 2 + 5 + 1 - 9 + 4
Constraints:
3 <= A.length <= 50000
-10^4 <= A[i] <= 10^4
问题
给你一个整数数组 A,只有可以将其划分为三个和相等的非空部分时才返回 true,否则返回 false。
形式上,如果可以找出索引 i+1 < j 且满足 (A[0] + A[1] + ... + A[i] == A[i+1] + A[i+2] + ... + A[j-1] == A[j] + A[j-1] + ... + A[A.length - 1]) 就可以将数组三等分。
示例 1:
输出:[0,2,1,-6,6,-7,9,1,2,0,1]
输出:true
解释:0 + 2 + 1 = -6 + 6 - 7 + 9 + 1 = 2 + 0 + 1
示例 2:
输入:[0,2,1,-6,6,7,9,-1,2,0,1]
输出:false
示例 3:
输入:[3,3,6,5,-2,2,5,1,-9,4]
输出:true
解释:3 + 3 = 6 = 5 - 2 + 2 + 5 + 1 - 9 + 4
提示:
3 <= A.length <= 50000
-10^4 <= A[i] <= 10^4
思路
双指针
先整体求和,不能被 3 整除直接返回 False。
再用双指针,分别计算两边的和是否满足等于 sum/3。
注意:题目的意思就是相邻元素相加,而不是任意相加。
时间复杂度: O(n)
空间复杂度: O(1)
Python3代码
class Solution:
def canThreePartsEqualSum(self, A: List[int]) -> bool:
sum = 0
for x in A:
sum += x
# 和不能被3整除,肯定不符合
if sum % 3:
return False
left, right = 0, len(A)-1
leftSum, rightSum = A[left], A[right]
# left + 1 < right: 防止将数组只分成两部分,中间部分至少要有一个元素
while left + 1 < right:
# 左右都等于sum/3,中间肯定等于sum/3
if leftSum == sum/3 and rightSum == sum/3:
return True
if leftSum != sum/3:
left += 1
leftSum += A[left]
if rightSum != sum/3:
right -= 1
rightSum += A[right]
return False
代码地址
最怕一生碌碌无为,还说平凡难能可贵。