KL-divergence

KL-divergence,俗称KL距离,常用来衡量两个概率分布的距离。

根据shannon的信息论,给定一个字符集的概率分布,我们可以设计一种编码,使得表示该字符集组成的字符串平均需要的比特数最少。假设这个字符集是X,对x∈X,其出现概率为P(x),那么其最优编码平均需要的比特数等于这个字符集的熵:

H(X)=∑x∈XP(x)log[1/P(x)]

在同样的字符集上,假设存在另一个概率分布Q(X)。如果用概率分布P(X)的最优编码(即字符x的编码长度等于log[1/P(x)]),来为符合分布Q(X)的字符编码,那么表示这些字符就会比理想情况多用一些比特数。KL-divergence就是用来衡量这种情况下平均每个字符多用的比特数,因此可以用来衡量两个分布的距离。即:

DKL(Q||P)=∑x∈XQ(x)[log(1/P(x))] - ∑x∈XQ(x)[log[1/Q(x)]]=∑x∈XQ(x)log[Q(x)/P(x)]

由于-log(u)是凸函数,因此有下面的不等式

DKL(Q||P) = -∑x∈XQ(x)log[P(x)/Q(x)] = E[-logP(x)/Q(x)] ≥ -logE[P(x)/Q(x)] = -log∑x∈XQ(x)P(x)/Q(x) = 0

即KL-divergence始终是大于等于0的。当且仅当两分布相同时,KL-divergence等于0。

posted @ 2014-05-21 15:15  wonglou  阅读(867)  评论(0编辑  收藏  举报