Loading

HOG输出维度计算方法

一、HOG API

from skimage import feature as ft
features = ft.hog(image,  # input image
                  orientations=ori,  # number of bins
                  pixels_per_cell=ppc, # pixel per cell
                  cells_per_block=cpb, # cells per blcok
                  block_norm = 'L1', #  block norm : str {‘L1’, ‘L1-sqrt’, ‘L2’, ‘L2-Hys’}
                  transform_sqrt = True, # power law compression (also known as gamma correction)
                  feature_vector=True, # flatten the final vectors
                  visualise=False) # return HOG map

使用方式如下:

from skimage.feature import hog
import scipy

def rgb2gray(rgb_image):
    """
    Convert RGB image to grayscale
    Returns:  grayscale image
    """
    return np.dot(rgb_image[..., :3], [0.299, 0.587, 0.144])

def get_hog_feature(img_path, save_path):
    image = scipy.misc.imread(img_path)
    gray = rgb2gray(image) / 255.0

    feature = hog(gray, orientations=9, block_norm='L1', pixels_per_cell=[8, 8], cells_per_block=[4, 4],
                  visualize=False, transform_sqrt=True)

二、HOG特征维度计算

我这里使用的图像是Fruits-360中的,图像大小为100x100.

根据代码orientations=9得知bins=9.

根据代码pixels_per_cell=[8, 8], cells_per_block=[4, 4]得知,
每个cell的大小为8x8,每个block包含4x4=16个cell,每个block的大小为(8x4)x(8x4)=32x32.

block stride默认为8x8,(图像大小100 - block大小32)/ 步长8 + 1 = 9
因此block的个数为9x9=81个.

所以特征维度为bins x block个数 x 每个block包含的cell个数 = 9 x (9x9) x (4x4) = 11664.

image

可见,实际运行得到的和计算出来的一致.

三、参考链接

posted @ 2022-06-24 14:31  少年人永远倔强  阅读(324)  评论(0编辑  收藏  举报