Linux 内核设备驱动程序的IO寄存器访问 (下)
Linux 内核设备驱动程序通过 devm_regmap_init_mmio()
等函数获得 struct regmap
结构对象,该对象包含可用于访问设备寄存器的全部信息,包括定义访问操作如何执行的 bus,定义了各个设备寄存器的读写属性的 config,以及加速设备寄存器访问的 cache。
Linux 内核设备驱动程序可以通过 regmap_write()
、regmap_read()
和 regmap_update_bits()
等函数读写设备寄存器,通过 regcache_sync()
、regcache_cache_only()
、regcache_cache_bypass()
和 regcache_mark_dirty()
等函数操作缓存。
基于 I2C 的 regmap
通过 I2C 访问的设备寄存器,可以使用 regmap 机制来访问。如在 ALC 5651 audio codec 内核设备驱动程序里,在 probe
操作中创建 regmap 对象 (位于 sound/soc/codecs/rt5651.c
):
static const struct regmap_config rt5651_regmap = { .reg_bits = 8, .val_bits = 16, .max_register = RT5651_DEVICE_ID + 1 + (ARRAY_SIZE(rt5651_ranges) * RT5651_PR_SPACING), .volatile_reg = rt5651_volatile_register, .readable_reg = rt5651_readable_register, .cache_type = REGCACHE_RBTREE, .reg_defaults = rt5651_reg, .num_reg_defaults = ARRAY_SIZE(rt5651_reg), .ranges = rt5651_ranges, .num_ranges = ARRAY_SIZE(rt5651_ranges), .use_single_read = true, .use_single_write = true, }; . . . . . . static int rt5651_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct rt5651_priv *rt5651; int ret; int err; rt5651 = devm_kzalloc(&i2c->dev, sizeof(*rt5651), GFP_KERNEL); if (NULL == rt5651) return -ENOMEM; i2c_set_clientdata(i2c, rt5651); rt5651->regmap = devm_regmap_init_i2c(i2c, &rt5651_regmap); if (IS_ERR(rt5651->regmap)) { ret = PTR_ERR(rt5651->regmap); dev_err(&i2c->dev, "Failed to allocate register map: %d\n", ret); return ret; } . . . . . .
之后对设备寄存器的访问方法,同 mmio 的一样。这里创建 regmap 对象的方法为调用 devm_regmap_init_i2c()
,这是一个宏,其定义 (位于 include/linux/regmap.h
) 如下:
struct regmap *__devm_regmap_init_i2c(struct i2c_client *i2c, const struct regmap_config *config, struct lock_class_key *lock_key, const char *lock_name); . . . . . . /** * devm_regmap_init_i2c() - Initialise managed register map * * @i2c: Device that will be interacted with * @config: Configuration for register map * * The return value will be an ERR_PTR() on error or a valid pointer * to a struct regmap. The regmap will be automatically freed by the * device management code. */ #define devm_regmap_init_i2c(i2c, config) \ __regmap_lockdep_wrapper
这个宏调用了 __devm_regmap_init_i2c()
函数,该函数定义 (位于 drivers/base/regmap/regmap-i2c.c
) 如下:
static const struct regmap_bus regmap_smbus_byte = { .reg_write = regmap_smbus_byte_reg_write, .reg_read = regmap_smbus_byte_reg_read, }; . . . . . . static const struct regmap_bus regmap_smbus_word = { .reg_write = regmap_smbus_word_reg_write, .reg_read = regmap_smbus_word_reg_read, }; . . . . . . static const struct regmap_bus regmap_smbus_word_swapped = { .reg_write = regmap_smbus_word_write_swapped, .reg_read = regmap_smbus_word_read_swapped, }; . . . . . . static const struct regmap_bus regmap_i2c = { .write = regmap_i2c_write, .gather_write = regmap_i2c_gather_write, .read = regmap_i2c_read, .reg_format_endian_default = REGMAP_ENDIAN_BIG, .val_format_endian_default = REGMAP_ENDIAN_BIG, }; . . . . . . static const struct regmap_bus regmap_i2c_smbus_i2c_block = { .write = regmap_i2c_smbus_i2c_write, .read = regmap_i2c_smbus_i2c_read, .max_raw_read = I2C_SMBUS_BLOCK_MAX, .max_raw_write = I2C_SMBUS_BLOCK_MAX, }; . . . . . . static const struct regmap_bus regmap_i2c_smbus_i2c_block_reg16 = { .write = regmap_i2c_smbus_i2c_write_reg16, .read = regmap_i2c_smbus_i2c_read_reg16, .max_raw_read = I2C_SMBUS_BLOCK_MAX, .max_raw_write = I2C_SMBUS_BLOCK_MAX, }; static const struct regmap_bus *regmap_get_i2c_bus(struct i2c_client *i2c, const struct regmap_config *config) { const struct i2c_adapter_quirks *quirks; const struct regmap_bus *bus = NULL; struct regmap_bus *ret_bus; u16 max_read = 0, max_write = 0; if (i2c_check_functionality(i2c->adapter, I2C_FUNC_I2C)) bus = ®map_i2c; else if (config->val_bits == 8 && config->reg_bits == 8 && i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_I2C_BLOCK)) bus = ®map_i2c_smbus_i2c_block; else if (config->val_bits == 8 && config->reg_bits == 16 && i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_I2C_BLOCK)) bus = ®map_i2c_smbus_i2c_block_reg16; else if (config->val_bits == 16 && config->reg_bits == 8 && i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_WORD_DATA)) switch (regmap_get_val_endian(&i2c->dev, NULL, config)) { case REGMAP_ENDIAN_LITTLE: bus = ®map_smbus_word; break; case REGMAP_ENDIAN_BIG: bus = ®map_smbus_word_swapped; break; default: /* everything else is not supported */ break; } else if (config->val_bits == 8 && config->reg_bits == 8 && i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) bus = ®map_smbus_byte; if (!bus) return ERR_PTR(-ENOTSUPP); quirks = i2c->adapter->quirks; if (quirks) { if (quirks->max_read_len && (bus->max_raw_read == 0 || bus->max_raw_read > quirks->max_read_len)) max_read = quirks->max_read_len; if (quirks->max_write_len && (bus->max_raw_write == 0 || bus->max_raw_write > quirks->max_write_len)) max_write = quirks->max_write_len; if (max_read || max_write) { ret_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL); if (!ret_bus) return ERR_PTR(-ENOMEM); ret_bus->free_on_exit = true; ret_bus->max_raw_read = max_read; ret_bus->max_raw_write = max_write; bus = ret_bus; } } return bus; } . . . . . . struct regmap *__devm_regmap_init_i2c(struct i2c_client *i2c, const struct regmap_config *config, struct lock_class_key *lock_key, const char *lock_name) { const struct regmap_bus *bus = regmap_get_i2c_bus(i2c, config); if (IS_ERR(bus)) return ERR_CAST(bus); return __devm_regmap_init(&i2c->dev, bus, &i2c->dev, config, lock_key, lock_name); } EXPORT_SYMBOL_GPL(__devm_regmap_init_i2c);
__devm_regmap_init_i2c()
函数首先根据寄存器映射的配置,如寄存器地址的位数,寄存器值的位数,I2C 总线的功能特性,大尾端还是小尾端等,选择设备寄存器的访问操作,即 struct regmap_bus
,然后如同 __devm_regmap_init_mmio_clk()
函数一样,通过 __devm_regmap_init()
函数创建并初始化 regmap 对象。
这里通过 i2c_check_functionality()
函数判断 I2C 总线的功能特性,这个函数定义 (位于 include/linux/i2c.h
) 如下:
/* Return the functionality mask */ static inline u32 i2c_get_functionality(struct i2c_adapter *adap) { return adap->algo->functionality(adap); } /* Return 1 if adapter supports everything we need, 0 if not. */ static inline int i2c_check_functionality(struct i2c_adapter *adap, u32 func) { return (func & i2c_get_functionality(adap)) == func; }
即通过 I2C 总线适配器驱动程序实现的 functionality
操作来判断。ALC 5651 Linux 内核驱动程序的寄存器映射配置,寄存器地址为 8 位,值为 16 位,对于标准的 I2C 总线,对应的 I2C IO 操作如下:
static int regmap_i2c_write(void *context, const void *data, size_t count) { struct device *dev = context; struct i2c_client *i2c = to_i2c_client(dev); int ret; ret = i2c_master_send(i2c, data, count); if (ret == count) return 0; else if (ret < 0) return ret; else return -EIO; } static int regmap_i2c_gather_write(void *context, const void *reg, size_t reg_size, const void *val, size_t val_size) { struct device *dev = context; struct i2c_client *i2c = to_i2c_client(dev); struct i2c_msg xfer[2]; int ret; /* If the I2C controller can't do a gather tell the core, it * will substitute in a linear write for us. */ if (!i2c_check_functionality(i2c->adapter, I2C_FUNC_NOSTART)) return -ENOTSUPP; xfer[0].addr = i2c->addr; xfer[0].flags = 0; xfer[0].len = reg_size; xfer[0].buf = (void *)reg; xfer[1].addr = i2c->addr; xfer[1].flags = I2C_M_NOSTART; xfer[1].len = val_size; xfer[1].buf = (void *)val; ret = i2c_transfer(i2c->adapter, xfer, 2); if (ret == 2) return 0; if (ret < 0) return ret; else return -EIO; } static int regmap_i2c_read(void *context, const void *reg, size_t reg_size, void *val, size_t val_size) { struct device *dev = context; struct i2c_client *i2c = to_i2c_client(dev); struct i2c_msg xfer[2]; int ret; xfer[0].addr = i2c->addr; xfer[0].flags = 0; xfer[0].len = reg_size; xfer[0].buf = (void *)reg; xfer[1].addr = i2c->addr; xfer[1].flags = I2C_M_RD; xfer[1].len = val_size; xfer[1].buf = val; ret = i2c_transfer(i2c->adapter, xfer, 2); if (ret == 2) return 0; else if (ret < 0) return ret; else return -EIO; } static const struct regmap_bus regmap_i2c = { .write = regmap_i2c_write, .gather_write = regmap_i2c_gather_write, .read = regmap_i2c_read, .reg_format_endian_default = REGMAP_ENDIAN_BIG, .val_format_endian_default = REGMAP_ENDIAN_BIG, };
这里构造消息给 I2C 总线驱动程序,调用 Linux 内核 I2C 子系统提供的 i2c_master_send()
和 i2c_transfer()
等操作,完成对设备寄存器的读写。Linux 内核 I2C 子系统及 I2C 总线驱动程序的更多细节这里不多赘述。
写设备寄存器
Linux 内核设备驱动程序通过 regmap_write()
等函数写设备寄存器,相关的这些函数原型 (位于 include/linux/regmap.h
) 如下:
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val); int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val); int regmap_raw_write(struct regmap *map, unsigned int reg, const void *val, size_t val_len); int regmap_noinc_write(struct regmap *map, unsigned int reg, const void *val, size_t val_len); int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val, size_t val_count); int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs, int num_regs); int regmap_multi_reg_write_bypassed(struct regmap *map, const struct reg_sequence *regs, int num_regs); int regmap_raw_write_async(struct regmap *map, unsigned int reg, const void *val, size_t val_len);
regmap_write()
和 regmap_write_async()
函数分别同步和异步地写一个设备寄存器,这两个函数定义 (位于 drivers/base/regmap/regmap.c
) 如下:
bool regmap_reg_in_ranges(unsigned int reg, const struct regmap_range *ranges, unsigned int nranges) { const struct regmap_range *r; int i; for (i = 0, r = ranges; i < nranges; i++, r++) if (regmap_reg_in_range(reg, r)) return true; return false; } EXPORT_SYMBOL_GPL(regmap_reg_in_ranges); bool regmap_check_range_table(struct regmap *map, unsigned int reg, const struct regmap_access_table *table) { /* Check "no ranges" first */ if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges)) return false; /* In case zero "yes ranges" are supplied, any reg is OK */ if (!table->n_yes_ranges) return true; return regmap_reg_in_ranges(reg, table->yes_ranges, table->n_yes_ranges); } EXPORT_SYMBOL_GPL(regmap_check_range_table); bool regmap_writeable(struct regmap *map, unsigned int reg) { if (map->max_register && reg > map->max_register) return false; if (map->writeable_reg) return map->writeable_reg(map->dev, reg); if (map->wr_table) return regmap_check_range_table(map, reg, map->wr_table); return true; } . . . . . . static inline void *_regmap_map_get_context(struct regmap *map) { return (map->bus) ? map : map->bus_context; } int _regmap_write(struct regmap *map, unsigned int reg, unsigned int val) { int ret; void *context = _regmap_map_get_context(map); if (!regmap_writeable(map, reg)) return -EIO; if (!map->cache_bypass && !map->defer_caching) { ret = regcache_write(map, reg, val); if (ret != 0) return ret; if (map->cache_only) { map->cache_dirty = true; return 0; } } if (regmap_should_log(map)) dev_info(map->dev, "%x <= %x\n", reg, val); trace_regmap_reg_write(map, reg, val); return map->reg_write(context, reg, val); } /** * regmap_write() - Write a value to a single register * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_write(struct regmap *map, unsigned int reg, unsigned int val) { int ret; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; map->lock(map->lock_arg); ret = _regmap_write(map, reg, val); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_write); /** * regmap_write_async() - Write a value to a single register asynchronously * * @map: Register map to write to * @reg: Register to write to * @val: Value to be written * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val) { int ret; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; map->lock(map->lock_arg); map->async = true; ret = _regmap_write(map, reg, val); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_write_async);
像众多 regmap 机制提供的设备寄存器访问操作函数一样,这两个函数,在开始任何操作前先加了锁,并在结束操作后解锁,regmap 机制提供了对设备寄存器的互斥访问。
regmap_write_async()
函数在加锁后,将 map->async
赋值为 true
,并在解锁前将其赋值为 false
,从 _regmap_write()
函数的实现来看,这里的异步写疑似没有工作。
regmap_write()
和 regmap_write_async()
函数都通过 _regmap_write()
函数完成对设备寄存器的写操作。
_regmap_write()
函数的执行过程是简单的三步:
-
检查要写入的寄存器是否可写。这里的检查按照设备寄存器的读写属性配置进行。首先,检查寄存器是否超过了配置的寄存器,若超过了,则显然不可写;其次,当
writeable_reg
回调函数配置时,由该回调函数判断;然后,当wr_table
可写寄存器表配置时,根据该表做判断;否则,认为寄存器可写。对于寄存器是否可写的判断,如果同时配置了writeable_reg
回调函数和wr_table
可写寄存器表,则前者的优先级高于后者,后者将被忽略;如果两者都没有配置,则认为寄存器可写。 -
使用了 cache,而没开延迟 cache 时,将要写入寄存器的值先写入 cached。如果写入失败,则直接返回,否则继续执行。如果设置了
map->cache_only
,则将map->cache_dirty
置为true
并返回,否则继续执行。map->cache_only
标记表示不希望真正地写设备寄存器。 -
调用
struct regmap
的reg_write
操作向设备寄存器写入值。
这里的写操作基本上是一个无条件的写,即在写入设备寄存器之前,不会检查缓存中是否已经存在了相同值。
regcache_write()
函数定义 (位于 drivers/base/regmap/regcache.c
) 如下:
int regcache_write(struct regmap *map, unsigned int reg, unsigned int value) { if (map->cache_type == REGCACHE_NONE) return 0; BUG_ON(!map->cache_ops); if (!regmap_volatile(map, reg)) return map->cache_ops->write(map, reg, value); return 0; }
regcache_write()
函数,首先,检查是否开启了 cache,如果没有则直接返回,否则继续执行;其次,检查要写入的寄存器是否为 volatile 的,如果不是,则通过 cache 实现的 write
回调写入 cache,否则返回。
regmap_volatile()
函数用以检查寄存器是否为 volatile 的,这个函数定义 (位于 drivers/base/regmap/regmap.c
) 如下:
bool regmap_readable(struct regmap *map, unsigned int reg) { if (!map->reg_read) return false; if (map->max_register && reg > map->max_register) return false; if (map->format.format_write) return false; if (map->readable_reg) return map->readable_reg(map->dev, reg); if (map->rd_table) return regmap_check_range_table(map, reg, map->rd_table); return true; } bool regmap_volatile(struct regmap *map, unsigned int reg) { if (!map->format.format_write && !regmap_readable(map, reg)) return false; if (map->volatile_reg) return map->volatile_reg(map->dev, reg); if (map->volatile_table) return regmap_check_range_table(map, reg, map->volatile_table); if (map->cache_ops) return false; else return true; }
对寄存器是否为 volatile 的检查,暗含着对它是否可读的检查。如果寄存器不是 volatile 的,会被认为是可缓存的。regmap_volatile()
函数的检查过程如下:
-
没有定义
format_write
操作,同时寄存器不可读,则认为寄存器不是 volatile 的。这里有个坑。如果寄存器是只写的,比如 W1C 写 1 清的寄存器等 (对于硬件设备,这样的寄存器比较常见),在这里会被判定为非 volatile 的,如果开了缓存即是可缓存的。在regmap_update_bits()
操作中会出问题 -
和对寄存器的 writable 判断类似,先检查配置的
volatile_reg
回调操作,再检查volatile_table
表。 -
如果既没有配置
volatile_reg
回调操作,也没有配置volatile_table
表,则根据缓存配置判断。如果开了缓存,则认为所有寄存器都是非 volatile 的,即都可以缓存,否则都是 volatile 的。
在 regmap_readable()
函数中对于寄存器是否可读的判断,与对寄存器是否可写的判断类似。但多了对 map->reg_read
寄存器读操作的检查,及格式化写的检查。
这里不再详细分析 regmap_raw_write()
、regmap_noinc_write()
和 regmap_bulk_write()
等更复杂的设备寄存器写操作。
读设备寄存器
Linux 内核设备驱动程序通过 regmap_read()
等函数读设备寄存器,相关的这些函数原型 (位于 include/linux/regmap.h
) 如下:
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val); int regmap_raw_read(struct regmap *map, unsigned int reg, void *val, size_t val_len); int regmap_noinc_read(struct regmap *map, unsigned int reg, void *val, size_t val_len); int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val, size_t val_count);
regmap_read()
函数同步地读一个设备寄存器,这个函数定义 (位于 drivers/base/regmap/regmap.c
) 如下:
static int _regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) { int ret; void *context = _regmap_map_get_context(map); if (!map->cache_bypass) { ret = regcache_read(map, reg, val); if (ret == 0) return 0; } if (map->cache_only) return -EBUSY; if (!regmap_readable(map, reg)) return -EIO; ret = map->reg_read(context, reg, val); if (ret == 0) { if (regmap_should_log(map)) dev_info(map->dev, "%x => %x\n", reg, *val); trace_regmap_reg_read(map, reg, *val); if (!map->cache_bypass) regcache_write(map, reg, *val); } return ret; } /** * regmap_read() - Read a value from a single register * * @map: Register map to read from * @reg: Register to be read from * @val: Pointer to store read value * * A value of zero will be returned on success, a negative errno will * be returned in error cases. */ int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val) { int ret; if (!IS_ALIGNED(reg, map->reg_stride)) return -EINVAL; map->lock(map->lock_arg); ret = _regmap_read(map, reg, val); map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_read);
与 regmap_write()
函数类似, regmap_read()
函数,首先,对 regmap 加锁;然后,调用 _regmap_read()
函数执行读操作;最后,解锁并返回。_regmap_read()
函数的执行过程是清晰的几个步骤:
-
如果开启了缓存,则先从缓存读,如果成功则返回,否则继续执行。
-
如果设置了
map->cache_only
,则报错返回。设备驱动程序挂起时,可以设置map->cache_only
,以防止意外地对设备寄存器读写。 -
判断寄存器是否可读,如果不可读,则报错返回,否则继续执行。对于只写的设备寄存器,如果开启了缓存,在这个函数中将读到上次写入的值。在逻辑上,这样的返回值不太合适。这个函数更好的实现方法,似乎是将寄存器是否可读的判断,放在从缓存读寄存器前面。
-
读取设备寄存器。
-
读取设备寄存器成功,且开启了缓存,则将读取的值写入缓存。
从缓存中读取设备寄存器的值的函数 regcache_read()
定义 (位于 drivers/base/regmap/regcache.c
) 如下:
int regcache_read(struct regmap *map, unsigned int reg, unsigned int *value) { int ret; if (map->cache_type == REGCACHE_NONE) return -ENOSYS; BUG_ON(!map->cache_ops); if (!regmap_volatile(map, reg)) { ret = map->cache_ops->read(map, reg, value); if (ret == 0) trace_regmap_reg_read_cache(map, reg, *value); return ret; } return -EINVAL; }
缓存操作针对开启了缓存的 regmap 的非 volatile 的寄存器。在 regcache_read()
函数中,它从缓存实现中读取寄存器的值。
这里不再详细分析 regmap_raw_read()
、regmap_noinc_read()
和 regmap_bulk_read()
等更复杂的设备寄存器读操作。
设备寄存器位更新
Linux 内核设备驱动程序通过 regmap_update_bits()
等函数更新设备寄存器的特定位,相关的这些函数原型 (位于 include/linux/regmap.h
) 如下:
int regmap_update_bits_base(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change, bool async, bool force); static inline int regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val) { return regmap_update_bits_base(map, reg, mask, val, NULL, false, false); } static inline int regmap_update_bits_async(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val) { return regmap_update_bits_base(map, reg, mask, val, NULL, true, false); } static inline int regmap_update_bits_check(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change) { return regmap_update_bits_base(map, reg, mask, val, change, false, false); } static inline int regmap_update_bits_check_async(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change) { return regmap_update_bits_base(map, reg, mask, val, change, true, false); } static inline int regmap_write_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val) { return regmap_update_bits_base(map, reg, mask, val, NULL, false, true); }
regmap_update_bits()
等函数传入不同的参数调用 regmap_update_bits_base()
函数,后者定义 (位于 drivers/base/regmap/regmap.c
) 如下:
static int _regmap_update_bits(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change, bool force_write) { int ret; unsigned int tmp, orig; if (change) *change = false; if (regmap_volatile(map, reg) && map->reg_update_bits) { ret = map->reg_update_bits(map->bus_context, reg, mask, val); if (ret == 0 && change) *change = true; } else { ret = _regmap_read(map, reg, &orig); if (ret != 0) return ret; tmp = orig & ~mask; tmp |= val & mask; if (force_write || (tmp != orig)) { ret = _regmap_write(map, reg, tmp); if (ret == 0 && change) *change = true; } } return ret; } /** * regmap_update_bits_base() - Perform a read/modify/write cycle on a register * * @map: Register map to update * @reg: Register to update * @mask: Bitmask to change * @val: New value for bitmask * @change: Boolean indicating if a write was done * @async: Boolean indicating asynchronously * @force: Boolean indicating use force update * * Perform a read/modify/write cycle on a register map with change, async, force * options. * * If async is true: * * With most buses the read must be done synchronously so this is most useful * for devices with a cache which do not need to interact with the hardware to * determine the current register value. * * Returns zero for success, a negative number on error. */ int regmap_update_bits_base(struct regmap *map, unsigned int reg, unsigned int mask, unsigned int val, bool *change, bool async, bool force) { int ret; map->lock(map->lock_arg); map->async = async; ret = _regmap_update_bits(map, reg, mask, val, change, force); map->async = false; map->unlock(map->lock_arg); return ret; } EXPORT_SYMBOL_GPL(regmap_update_bits_base);
与 regmap_write()
和 regmap_read()
函数类似,regmap_update_bits_base()
函数,首先,对 regmap 加锁;然后,设置 map->async
标志,调用 _regmap_update_bits()
函数执行寄存器位更新操作;最后,重置 map->async
标志,解锁并返回。_regmap_update_bits()
函数的执行分成几种情况来处理:
-
寄存器为 volatile 的,同时配置了
reg_update_bits
回调函数,则执行reg_update_bits
回调函数并返回结果。寄存器为 volatile 的,所以可以忽略对 cached 的操作。只写寄存器会被判定为非 volatile 的,因而它们不会由reg_update_bits
回调函数处理。 -
其它情况。先读取寄存器。特别需要关注的是对只写寄存器的处理。第一次读取只写寄存器时,会读取失败并返回错误。如果之前对只写寄存器有过写入操作,且开了 cache,则会读取之前写入的值。随后,如果要求强制写,或要写入的位的值与读取的值不同,则将值写入寄存器。如果开了 cache,写操作会更新 cache。
考虑只写寄存器通过 regmap_update_bits_base()
函数来更新,则要么更新失败,要么很可能发现要更新的值和缓存中的值一致,而不会实际去更新。对只写寄存器的任何更新,regmap_write()
或 regmap_write_bits()
函数是更好的选择。
要使得对 regmap 各函数调用的行为符合预期,还是需要对这些函数的行为实现有所了解,并适当的配置驱动程序中各个寄存器的读写属性。
整体看下来,regmap 机制提供的能力有这样一些:
- 提供的设备寄存器访问操作函数可以执行对设备寄存器的互斥访问。
- 提高效率的 cache,其中包含多个 cache 策略可选。
- 统一的方便的 IO 访问操作函数访问 mmio,i2c 等不同总线的设备 IO 寄存器。
- 通过 debugfs 调试相关设备 IO 寄存器的能力。
- 良好的扩展能力。如未来要通过 regmap 机制支持一种新的访问设备 IO 寄存器的总线,则仅需实现
struct regmap_bus
即可。
Done.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)