opencv 画出各种滤波器模板图像 证明拉普拉斯滤波器是一个高通滤波器

实验:
将滤波器模板,利用傅里叶变换,转换到频域内,将低频中心由图像左上角转换到图像中心。显示滤波器模板图像。
从拉普拉斯滤波器模板图像中,可以看出,中心部分为黑色,阻止了低频信息通过,外围为白色,通过了高频信息。所以拉普拉斯滤波器是一个高通滤波器。

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

# simple averaging filter without scaling parameter
mean_filter = np.ones((3,3))

# creating a gaussian filter
x = cv.getGaussianKernel(5,10)
gaussian = x*x.T

# different edge detecting filters
# scharr in x-direction
scharr = np.array([[-3, 0, 3],
                   [-10,0,10],
                   [-3, 0, 3]])
# sobel in x direction
sobel_x= np.array([[-1, 0, 1],
                   [-2, 0, 2],
                   [-1, 0, 1]])
# sobel in y direction
sobel_y= np.array([[-1,-2,-1],
                   [0, 0, 0],
                   [1, 2, 1]])
# laplacian
laplacian=np.array([[0, 1, 0],
                    [1,-4, 1],
                    [0, 1, 0]])

filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian','laplacian', 'sobel_x', \
                'sobel_y', 'scharr_x']
fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z)+1) for z in fft_shift]

for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(mag_spectrum[i],cmap = 'gray')
    plt.title(filter_name[i]), plt.xticks([]), plt.yticks([])

plt.show()

各种滤波器模板图像

posted on 2020-04-12 12:08  我坚信阳光灿烂  阅读(1275)  评论(0编辑  收藏  举报

导航