opencv 实现角点检测 Shi-Tomasi角点检测

角点检测概述

角点检测概述

Harris角点检测算法手动实现

Harris角点检测算法手动实现

opencv中使用Harris角点检测

opencv中使用Harris角点检测

opencv中使用 Shi-Tomasi角点检测

函数:corners = cv.goodFeaturesToTrack( image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]] )
image:源图像
maxCorners:角点数
qualityLevel:质量等级
minDistance:角点之间最小距离

实验:使用Shi-Tomasi检测图像角点

import cv2 as cv
import numpy as np

img = cv.imread('qiqiao.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

# Shi-Tomasi角点检测
corners = cv.goodFeaturesToTrack(gray, 12, 0.01, 10)
corners = np.int0(corners)  # 12个角点坐标

for i in corners:
    # 压缩至一维:[[62,64]]->[62,64]
    x, y = i.ravel()
    cv.circle(img, (x, y), 4, (0, 0, 255), -1)

cv.imshow('dst', img)
cv.waitKey(0)

Shi-Tomasi算法实现的图像角点显示

posted on 2020-04-03 12:36  我坚信阳光灿烂  阅读(414)  评论(0编辑  收藏  举报

导航