上一页 1 2 3 4 5 6 ··· 21 下一页
摘要: 转自 https://blog.csdn.net/itplus/article/details/21897715 阅读全文
posted @ 2019-01-03 15:15 FlyingWarrior 阅读(323) 评论(0) 推荐(0) 编辑
摘要: 转自 https://blog.csdn.net/itplus/article/details/21897443 阅读全文
posted @ 2019-01-03 15:12 FlyingWarrior 阅读(384) 评论(0) 推荐(0) 编辑
摘要: 转自 https://blog.csdn.net/itplus/article/details/21896981 阅读全文
posted @ 2019-01-03 15:07 FlyingWarrior 阅读(669) 评论(0) 推荐(0) 编辑
摘要: 阅读全文
posted @ 2019-01-03 12:06 FlyingWarrior 阅读(479) 评论(0) 推荐(0) 编辑
摘要: 转自 https://blog.csdn.net/itplus/article/details/21896453 阅读全文
posted @ 2019-01-02 20:57 FlyingWarrior 阅读(344) 评论(0) 推荐(0) 编辑
摘要: 转自局部敏感哈希(Locality-Sensitive Hashing, LSH) 一、局部敏感哈希LSH 在很多应用领域中,我们面对和需要处理的数据往往是海量并且具有很高的维度,怎样快速地从海量的高维数据集合中找到与某个数据最相似(距离最近)的一个数据或多个数据成为了一个难点和问题。如果是低维的小 阅读全文
posted @ 2019-01-02 16:33 FlyingWarrior 阅读(625) 评论(0) 推荐(0) 编辑
摘要: 转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下A句子和B句子的语 阅读全文
posted @ 2018-12-21 17:39 FlyingWarrior 阅读(38790) 评论(2) 推荐(9) 编辑
摘要: Combiner编程(可选步骤,视情况而定!) combiner最基本是实现本地key的归并,combiner具有类似本地的reduce功能。 如果不用combiner,那么所有的结果都是reduce完成,效率会相对低下。使用combiner,先完成的map会在本地聚合,提升速度。 注意:Combi 阅读全文
posted @ 2018-12-21 15:07 FlyingWarrior 阅读(153) 评论(0) 推荐(0) 编辑
摘要: shuffle阶段其实就是多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。 Map端: 1、在map端首先接触的是InputSplit,在InputSplit中含有DataNode中的数据,每一个InputSplit都会分配一个Mapper任务,Mapper任务结束 阅读全文
posted @ 2018-12-21 14:37 FlyingWarrior 阅读(306) 评论(0) 推荐(0) 编辑
摘要: MapReduce简介 MapReduce执行流程 MapReduce原理 MapReduce的执行步骤: 1、Map任务处理 1.1 读取HDFS中的文件。每一行解析成一个<k,v>。每一个键值对调用一次map函数。 <0,hello you> <10,hello me> 1.2 覆盖map(), 阅读全文
posted @ 2018-12-21 14:11 FlyingWarrior 阅读(203) 评论(0) 推荐(0) 编辑
上一页 1 2 3 4 5 6 ··· 21 下一页