[BZOJ3714][PA2014]Kuglarz(MST)
题目:
Description
魔术师的桌子上有n个杯子排成一行,编号为1,2,…,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品。花费c_ij元,魔术师就会告诉你杯子i,i+1,…,j底下藏有球的总数的奇偶性。
采取最优的询问策略,你至少需要花费多少元,才能保证猜出哪些杯子底下藏着球?
Input
第一行一个整数n(1<=n<=2000)。
第i+1行(1<=i<=n)有n+1-i个整数,表示每一种询问所需的花费。其中c_ij(对区间[i,j]进行询问的费用,1<=i<=j<=n,1<=c_ij<=10^9)为第i+1行第j+1-i个数。
Output
输出一个整数,表示最少花费。
分析:知道i..j的奇偶性等价于知道sum[j]-sum[i-1]的奇偶性,而最后全部都知道,也就是说并查集中n个点都合并到了一个并查集,形成了一个树,所以答案就是找个最小生成树就行了