P1494 小Z的袜子

P1494 小Z的袜子

 

  • 莫队板子题,对询问进行排序+分块,从而得到巧妙的复杂度
  • 对于L,R的询问。

    设其中颜色为x,y,z的袜子的个数为a,b,c...

    那么答案即为 (a*(a-1)/2+b*(b-1)/2+c*(c-1)/2....)/((R-L+1)*(R-L)/2)(a(a1)/2+b(b1)/2+c(c1)/2....)/((RL+1)(RL)/2)

    化简得: (a^2+b^2+c^2+...x^2-(a+b+c+d+.....))/((R-L+1)*(R-L))(a2+b2+c2+...x2(a+b+c+d+.....))/((RL+1)(RL))

    即: (a^2+b^2+c^2+...x^2-(R-L+1))/((R-L+1)*(R-L))(a2+b2+c2+...x2(RL+1))/((RL+1)(RL))

    我们需要解决的一个问题

    求一个区间内每种颜色数目的平方和。

  • 大佬博客
  • 代码:
#include <cstdio>
#include <iostream>
#include <cctype>
#include <algorithm>
#include <cmath>
using namespace std;

typedef long long LL;
#define res register int
inline int read()
{
	int x(0),f(1); char ch;
	while(!isdigit(ch=getchar())) if(ch=='-') f=-1;
	while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
	return f*x;
}

const int N=50005;
struct node{int x,y,z;LL p,q;}a[N];
int pos[N],c[N];
LL cnt[N];
int n,m,block;

inline bool cmp1(const node &n1,const node &n2)
{
	if(pos[n1.x]==pos[n2.x]) return n1.y<n2.y;
	return n1.x<n2.x;
}
inline bool cmp2(const node &a,const node &b)
{ return a.z<b.z; }

inline LL gcd(LL a,LL b) { return b?gcd(b,a%b):a; }

LL ans;
inline void update(int i,int d)
{
	ans-=cnt[c[i]] * cnt[c[i]];
	cnt[c[i]]+=d;
	ans+=cnt[c[i]] * cnt[c[i]];
}

inline void solve()
{
	ans=0;
	int l=1,r=0;
	for(res i=1 ; i<=m ; ++i)
	{
		if(a[i].x==a[i].y) 
		{
			a[i].p=0; a[i].q=1;
			continue;
		}
		for( ; r<a[i].y ; ++r)	update(r+1,1);
		for( ; r>a[i].y ; --r)	update(r,-1);
		for( ; l<a[i].x ; ++l)	update(l,-1);
		for( ; l>a[i].x ; --l) 	update(l-1,1);
		
		LL len=a[i].y-a[i].x+1;
		a[i].p=ans-len;
		a[i].q=len*(len-1);
		LL tmp=gcd(a[i].p,a[i].q);
		a[i].p/=tmp; a[i].q/=tmp;
	}
}
int main()
{
	n=read(); m=read();
	for(res i=1 ; i<=n ; ++i) c[i]=read();
	for(res i=1 ; i<=m ; ++i)
		a[i].x=read(),a[i].y=read(),a[i].z=i;
		
	block = sqrt(n);
	for(res i=1 ; i<=n ; ++i) pos[i]=(i-1)/block+1;
	
	sort(a+1,a+m+1,cmp1);
	solve();
	sort(a+1,a+m+1,cmp2);
	for(res i=1 ; i<=m ; ++i)
		printf("%lld/%lld\n",a[i].p,a[i].q);
	return 0;
}

  

posted @ 2019-03-12 17:19  孑行  阅读(119)  评论(0编辑  收藏  举报