Mathematica数据处理(7)--散点图(下)

今天我们来讲一下怎么画三维的散点图

先讲三个最基本函数

ListPlot3D

ListDensityPlot

ListContourPlot

和前面讲的一样,直接看三维的图比较直观,但是能理解的信息比较少,只能呈现一面的信息。


直接看下面的例子

data = Table[Sum[Sin[RandomReal[10, 2].{x, y}], {10 i}], {i, 3}, {x, 0, 5, .3}, {y, 0, 5, .3}];

产生一组数据

range = #[data[[1]]] & /@ {Min, Max}

Row[{
  ListPlot3D[data[[1]], ColorFunction -> "TemperatureMap", 
   ImageSize -> 300, PlotLabel -> Style[ListPlot3D, 24]],
  
  ListDensityPlot[data[[1]],
   ColorFunction -> "TemperatureMap",
   ImageSize -> 300,
   PlotLabel -> Style[ListDensityPlot, 24]],
  
  ListContourPlot[data[[1]],
   ColorFunction -> "TemperatureMap",
   ImageSize -> 300,
   PlotLabel -> Style[ListContourPlot, 24]]
  }]

画图,找到其中最大值和最小值,后面的图例有用

得到下图

把图修饰的好看一点,加一下图例

pic1 = ListContourPlot[data[[1]],
   ColorFunction -> "TemperatureMap",
   ImageSize -> 300,
   PlotLabel -> Style[ListContourPlot, 24]];

pic2 = BarLegend[{"TemperatureMap", range}, LegendLayout -> "Row", 
   LegendMarkerSize -> 300];
Column[{pic1, pic2}, Center]

得到下面的图


****************************************

这里我想讲一下ListPlot3D里面输入n×n时候的意思

知道的话可以直接跳过,其实就是其帮助文档的第一条


n×n的相当于定义了曲面的高度

a = {{0, 0, 0, 0}, {0, 10, 10, 0}, {0, 10, 10, 0}, {0, 0, 0, 0}};
ListPlot3D[a, ImageSize -> Large, ColorFunction -> "TemperatureMap"]

这两行就相当于是其实相当于 在( 0 , 0 )的位置高度为0,即坐标( 0 , 0 , 0 ),在( 2 , 3 )的位置高度为10,即坐标( 2 , 3 , 10 )

画出来的图像是这样的


*****************************

下面继续

讲一下 点集对数图 点集双对数图

有的时候我们直接看数据发现不了规律,又是不妨转换一下坐标,就能发现其中的奥秘


我们来看一个下面的例子

动物的体重与大脑重量的关系

data = ExampleData[{"Statistics", "AnimalWeights"}]

获取数据

Grid[data, Frame -> All,Background -> {None, {{LightBlue, LightGreen}}}]

得到如下的数据


光看数据也看不出什么规律,我们把他在图上画一下,看一下呈现什么样子

{animal, brian, weight} = Transpose[data];
chardata = Transpose@{brian, weight};
ListPlot[chardata]

并不能看出什么规律,这时我们考虑转换坐标,转换成对数坐标

Row[{
  ListLogPlot[chardata, ImageSize -> Medium],
  
  ListLogLogPlot[
   Table[Tooltip[chardata[[i]], animal[[i]]], {i, 1, 28}],
   ImageSize -> Medium,
   Frame -> True,
   FrameLabel -> {"大脑平均重量", "平均体重(公斤)"}]
  

得到如下的图

可以看到在双对数图上,数据呈现 线性关系


2016/8/13

以上,所有





posted on 2016-08-13 22:20  WMN7Q  阅读(1368)  评论(0编辑  收藏  举报

导航