ABC348
A
link
这道题就先输出整个的\(oox\),再输出剩一个两个的。
点击查看代码
#include<bits/stdc++.h>
using namespace std;
int n;
signed main(){
cin >> n;
int t = n/3;
for(int i = 1;i <= t;++ i)
cout << "oox";
if(n%3 == 1) cout << "o";
if(n%3 == 2) cout << "oo";
return 0;
}
B
link
可以用二维数组记录每个点到其他各点的距离,再找最小的。
点击查看代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n;
int x[105],y[105];
double g[105][105];
signed main(){
cin >> n;
for(int i = 1;i <= n;++ i)
cin >> x[i] >> y[i];
for(int i = 1;i <= n;++ i){
for(int j = 1;j < i;++ j){
g[i][j] = sqrt((x[i]-x[j])*(x[i]-x[j])
+(y[i]-y[j])*(y[i]-y[j]));
g[j][i] = g[i][j];
}
}
for(int i = 1;i <= n;++ i){
double mx =-1e6;
for(int j = 1;j <= n;++ j)
if(i != j) mx = max(mx,g[i][j]);
for(int j = 1;j <= n;++ j){
if(abs(g[i][j]-mx) <= 1e-6&&i != j){
cout << j << endl;
break;
}
}
}
return 0;
}
C
link
这个题也不难。
把每个颜色中的最小值存下来,再从这些中取最大值。
判断这个颜色之前出没出现过,新建一个位置,否则再原来的位置上再取\(min\)。
点击查看代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,c[200005],tp;
map<int,int> mp;
signed main(){
cin >> n;
for(int i = 1;i <= n;++ i){
int a,cc;
cin >> a >> cc;
if(mp[cc]) c[mp[cc]] = min(c[mp[cc]],a);
else mp[cc] = ++tp,c[mp[cc]] = a;
}
int ans = 0;
for(int i = 1;i <= tp;++ i)
ans = max(ans,c[i]);
cout << ans;
return 0;
}
D
link
一个普普通通的广搜。
点击查看代码
#include<bits/stdc++.h>
using namespace std;
int h,w;
int a[205][205];
int n;
int r,c,e;
int sx,sy,tx,ty;
int eng[205][205];
int le[205][205];
int dx[] = {0,0,0,1,-1};
int dy[] = {0,1,-1,0,0};
struct nd{
int x,y;
};
signed main(){
cin >> h >> w;
for(int i = 1;i <= h;++ i)
for(int j = 1;j <= w;++ j){
char ch;
cin >> ch;
if(ch == '.')a[i][j] = 0;
if(ch == '#')a[i][j] = 1;
if(ch == 'S')a[i][j] = 0,sx = i,sy = j;
if(ch == 'T')a[i][j] = 0,tx = i,ty = j;
}
cin >> n;
for(int i = 1;i <= n;++ i){
cin >> r >> c >> e;
eng[r][c] = e;
}
if(eng[sx][sy] == 0){
cout << "No";
return 0;
}
queue<nd> q;
q.push({sx,sy});
le[sx][sy] = eng[sx][sy];
while(!q.empty()){
int x = q.front().x;
int y = q.front().y;
q.pop();
for(int i = 1;i <= 4;++ i){
int xx = x+dx[i];
int yy = y+dy[i];
if(a[xx][yy] == 1) continue;
if(xx <= 0||yy <= 0||xx > h||yy > w)
continue;
if(max(le[x][y]-1,eng[xx][yy]) > le[xx][yy]){
q.push({xx,yy});
le[xx][yy] = max(le[x][y]-1,eng[xx][yy]);
}
if(xx == tx&&yy == ty){
cout << "Yes";
return 0;
}
}
}
cout << "No";
return 0;
}