几何板
// 计算几何模板 //二维平面 using namespace std; const double eps = 1e-8; const double inf = 1e20; const double pi = acos(-1.0); const int maxp = 1010; //Compares a double to zero int sgn(double x){ if(fabs(x) < eps)return 0; if(x < 0)return-1; else return 1; } //square of a double inline double sqr(double x){return x*x;} struct Point{ double x,y; Point(){} Point(double _x,double _y){ x = _x; y = _y; } void input(){ scanf("%lf%lf",&x,&y); } void output(){ printf("%.2f-%.2f\n",x,y); } bool operator == (Point b)const{ return sgn(x-b.x) == 0 && sgn(y-b.y) == 0; } bool operator < (Point b)const{ return sgn(x-b.x)== 0-sgn(y-b.y)?0:x<b.x; } Point operator-(const Point &b)const{ return Point(x-b.x,y-b.y); } //叉积 double operator ^(const Point &b)const{ return x*b.y-y*b.x; } //点积 double operator *(const Point &b)const{ return x*b.x + y*b.y; } //返回长度 double len(){ return hypot(x,y);//库函数 } //返回长度的平方 double len2(){ return x*x + y*y; } //返回两点的距离 double distance(Point p){ return hypot(x-p.x,y-p.y); } Point operator +(const Point &b)const{ return Point(x+b.x,y+b.y); } Point operator *(const double &k)const{ return Point(x*k,y*k); } Point operator /(const double &k)const{ return Point(x/k,y/k); } //计算 pa 和 pb 的夹角 //就是求这个点看 a,b 所成的夹角 //测试 LightOJ1203 double rad(Point a,Point b){ Point p = *this; return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) )); } //化为长度为 r 的向量 Point trunc(double r){ double l = len(); if(!sgn(l))return *this; r /= l; return Point(x*r,y*r); } //逆时针旋转 90 度 Point rotleft(){ return Point(-y,x); } //顺时针旋转 90 度 Point rotright(){ return Point(y,-x); } //绕着 p 点逆时针旋转 angle Point rotate(Point p,double angle){ Point v = (*this)-p; double c = cos(angle), s = sin(angle); return Point(p.x + v.x*c-v.y*s,p.y + v.x*s + v.y*c); } }; struct Line{ Point s,e; Line(){} Line(Point _s,Point _e){ s = _s; e = _e; } bool operator ==(Line v){ return (s == v.s)&&(e == v.e); } //根据一个点和倾斜角 angle 确定直线,0<=angle<pi Line(Point p,double angle){ s = p; if(sgn(angle-pi/2) == 0){ e = (s + Point(0,1)); } else{ e = (s + Point(1,tan(angle))); } } //ax+by+c=0 Line(double a,double b,double c){ if(sgn(a) == 0){ s = Point(0,-c/b); e = Point(1,-c/b); } else if(sgn(b) == 0){ s = Point(-c/a,0); e = Point(-c/a,1); } else{ s = Point(0,-c/b); e = Point(1,(-c-a)/b); } } void input(){ s.input(); e.input(); } void adjust(){ if(e < s){ swap(s,e); } } //求线段长度 double length(){ return s.distance(e); } //返回直线倾斜角 0<=angle<pi double angle(){ double k = atan2(e.y-s.y,e.x-s.x); if(sgn(k) < 0)k += pi; if(sgn(k-pi) == 0)k-= pi; return k; } //点和直线关系 //1 在左侧 //2 在右侧 //3 在直线上 int relation(Point p){ int c = sgn((p-s)^(e-s)); if(c < 0)return 1; else if(c > 0)return 2; else return 3; } // 点在线段上的判断 bool pointonseg(Point p){ return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <= 0; } //两向量平行 (对应直线平行或重合) bool parallel(Line v){ return sgn((e-s)^(v.e-v.s)) == 0; } //两线段相交判断 //2 规范相交 //1 非规范相交 //0 不相交 int segcrossseg(Line v){ int d1 = sgn((e-s)^(v.s-s)); int d2 = sgn((e-s)^(v.e-s)); int d3 = sgn((v.e-v.s)^(s-v.s)); int d4 = sgn((v.e-v.s)^(e-v.s)); if( (d1^d2)==-2 && (d3^d4)==-2 )return 2; return (d1==0 && sgn((v.s-s)*(v.s-e))<=0) || (d2==0 && sgn((v.e-s)*(v.e-e))<=0) || (d3==0 && sgn((s-v.s)*(s-v.e))<=0) || (d4==0 && sgn((e-v.s)*(e-v.e))<=0); } //直线和线段相交判断 //-*this line -v seg //2 规范相交 //1 非规范相交 //0 不相交 int linecrossseg(Line v){ int d1 = sgn((e-s)^(v.s-s)); int d2 = sgn((e-s)^(v.e-s)); if((d1^d2)==-2) return 2; return (d1==0||d2==0); } //两直线关系 //0 平行 //1 重合 //2 相交 int linecrossline(Line v){ if((*this).parallel(v)) return v.relation(s)==3; return 2; } //求两直线的交点 //要保证两直线不平行或重合 Point crosspoint(Line v){ double a1 = (v.e-v.s)^(s-v.s); double a2 = (v.e-v.s)^(e-v.s); return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1 )); } //点到直线的距离 double dispointtoline(Point p){ return fabs((p-s)^(e-s))/length(); } //点到线段的距离 double dispointtoseg(Point p){ if(sgn((p-s)*(e-s))<0 || sgn((p-e)*(s-e))<0) return min(p.distance(s),p.distance(e)); return dispointtoline(p); } //返回线段到线段的距离 //前提是两线段不相交,相交距离就是 0 了 double dissegtoseg(Line v){ return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v .dispointtoseg(s),v.dispointtoseg(e))); } //返回点 p 在直线上的投影 Point lineprog(Point p){ return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) ); } //返回点 p 关于直线的对称点 Point symmetrypoint(Point p){ Point q = lineprog(p); return Point(2*q.x-p.x,2*q.y-p.y); } }; //圆 struct circle{ Point p;//圆心 double r;//半径 circle(){} circle(Point _p,double _r){ p = _p; r = _r; } circle(double x,double y,double _r){ p = Point(x,y); r = _r; } //三角形的外接圆 //需要 Point 的 + / rotate() 以及 Line 的 crosspoint() //利用两条边的中垂线得到圆心 //测试:UVA12304 circle(Point a,Point b,Point c){ Line u = Line((a+b)/2,((a+b)/2)+((b-a).rotleft())); Line v = Line((b+c)/2,((b+c)/2)+((c-b).rotleft())); p = u.crosspoint(v); r = p.distance(a); } //三角形的内切圆 //参数 bool t 没有作用,只是为了和上面外接圆函数区别 //测试:UVA12304 circle(Point a,Point b,Point c,bool t){ Line u,v; double m = atan2(b.y-a.y,b.x-a.x), n = atan2(c.y-a.y,c.x-a. x); u.s = a; u.e = u.s + Point(cos((n+m)/2),sin((n+m)/2)); v.s = b; m = atan2(a.y-b.y,a.x-b.x) , n = atan2(c.y-b.y,c.x-b.x); v.e = v.s + Point(cos((n+m)/2),sin((n+m)/2)); p = u.crosspoint(v); r = Line(a,b).dispointtoseg(p); } //输入 void input(){ p.input(); scanf("%lf",&r); } //输出 void output(){ printf("%.2lf-%.2lf-%.2lf\n",p.x,p.y,r); } bool operator == (circle v){ return (p==v.p) && sgn(r-v.r)==0; } bool operator < (circle v)const{ return ((p<v.p)||((p==v.p)&&sgn(r-v.r)<0)); } //面积 double area(){ return pi*r*r; } //周长 double circumference(){ return 2*pi*r; } //点和圆的关系 //0 圆外 //1 圆上 //2 圆内 int relation(Point b){ double dst = b.distance(p); if(sgn(dst-r) < 0)return 2; else if(sgn(dst-r)==0)return 1; return 0; } //线段和圆的关系 //比较的是圆心到线段的距离和半径的关系 int relationseg(Line v){ double dst = v.dispointtoseg(p); if(sgn(dst-r) < 0)return 2; else if(sgn(dst-r) == 0)return 1; return 0; } //直线和圆的关系 //比较的是圆心到直线的距离和半径的关系 int relationline(Line v){ double dst = v.dispointtoline(p); if(sgn(dst-r) < 0)return 2; else if(sgn(dst-r) == 0)return 1; return 0; } //两圆的关系 //5 相离 //4 外切 //3 相交 //2 内切 //1 内含 //需要 Point 的 distance //测试:UVA12304 int relationcircle(circle v){ double d = p.distance(v.p); if(sgn(d-r-v.r) > 0)return 5; if(sgn(d-r-v.r) == 0)return 4; double l = fabs(r-v.r); if(sgn(d-r-v.r)<0 && sgn(d-l)>0)return 3; if(sgn(d-l)==0)return 2; if(sgn(d-l)<0)return 1; } //求两个圆的交点,返回 0 表示没有交点,返回 1 是一个交点,2 是两个交点 //需要 relationcircle //测试:UVA12304 int pointcrosscircle(circle v,Point &p1,Point &p2){ int rel = relationcircle(v); if(rel == 1 || rel == 5)return 0; double d = p.distance(v.p); double l = (d*d+r*r-v.r*v.r)/(2*d); double h = sqrt(r*r-l*l); Point tmp = p + (v.p-p).trunc(l); p1 = tmp + ((v.p-p).rotleft().trunc(h)); p2 = tmp + ((v.p-p).rotright().trunc(h)); if(rel == 2 || rel == 4) return 1; return 2; } //求直线和圆的交点,返回交点个数 int pointcrossline(Line v,Point &p1,Point &p2){ if(!(*this).relationline(v))return 0; Point a = v.lineprog(p); double d = v.dispointtoline(p); d = sqrt(r*r-d*d); if(sgn(d) == 0){ p1 = a; p2 = a; return 1; } p1 = a + (v.e-v.s).trunc(d); p2 = a-(v.e-v.s).trunc(d); return 2; } //得到过 a,b 两点,半径为 r1 的两个圆 int gercircle(Point a,Point b,double r1,circle &c1,circle &c2){ circle x(a,r1),y(b,r1); int t = x.pointcrosscircle(y,c1.p,c2.p); if(!t)return 0; c1.r = c2.r = r; return t; } //得到与直线 u 相切,过点 q, 半径为 r1 的圆 //测试:UVA12304 int getcircle(Line u,Point q,double r1,circle &c1,circle &c2){ double dis = u.dispointtoline(q); if(sgn(dis-r1*2)>0)return 0; if(sgn(dis) == 0){ c1.p = q + ((u.e-u.s).rotleft().trunc(r1)); c2.p = q + ((u.e-u.s).rotright().trunc(r1)); c1.r = c2.r = r1; return 2; } Line u1 = Line((u.s + (u.e-u.s).rotleft().trunc(r1)),(u.e + (u.e-u.s).rotleft().trunc(r1))); Line u2 = Line((u.s + (u.e-u.s).rotright().trunc(r1)),(u.e + (u.e-u.s).rotright().trunc(r1))); circle cc = circle(q,r1); Point p1,p2; if(!cc.pointcrossline(u1,p1,p2))cc.pointcrossline(u2,p1,p2) ; c1 = circle(p1,r1); if(p1 == p2){ c2 = c1; return 1; } c2 = circle(p2,r1); return 2; } //同时与直线 u,v 相切,半径为 r1 的圆 //测试:UVA12304 int getcircle(Line u,Line v,double r1,circle &c1,circle &c2, circle &c3,circle &c4){ if(u.parallel(v))return 0;//两直线平行 Line u1 = Line(u.s + (u.e-u.s).rotleft().trunc(r1),u.e + (u .e-u.s).rotleft().trunc(r1)); Line u2 = Line(u.s + (u.e-u.s).rotright().trunc(r1),u.e + ( u.e-u.s).rotright().trunc(r1)); Line v1 = Line(v.s + (v.e-v.s).rotleft().trunc(r1),v.e + (v .e-v.s).rotleft().trunc(r1)); Line v2 = Line(v.s + (v.e-v.s).rotright().trunc(r1),v.e + ( v.e-v.s).rotright().trunc(r1)); c1.r = c2.r = c3.r = c4.r = r1; c1.p = u1.crosspoint(v1); c2.p = u1.crosspoint(v2); c3.p = u2.crosspoint(v1); c4.p = u2.crosspoint(v2); return 4; } //同时与不相交圆 cx,cy 相切,半径为 r1 的圆 //测试:UVA12304 int getcircle(circle cx,circle cy,double r1,circle &c1,circle & c2){ circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r); int t = x.pointcrosscircle(y,c1.p,c2.p); if(!t)return 0; c1.r = c2.r = r1; return t; } //过一点作圆的切线 (先判断点和圆的关系) //测试:UVA12304 int tangentline(Point q,Line &u,Line &v){ int x = relation(q); if(x == 2)return 0; if(x == 1){ u = Line(q,q + (q-p).rotleft()); v = u; return 1; } double d = p.distance(q); double l = r*r/d; double h = sqrt(r*r-l*l); u = Line(q,p + ((q-p).trunc(l) + (q-p).rotleft().trunc(h))) ; v = Line(q,p + ((q-p).trunc(l) + (q-p).rotright().trunc(h)) ); return 2; } //求两圆相交的面积 double areacircle(circle v){ int rel = relationcircle(v); if(rel >= 4)return 0.0; if(rel <= 2)return min(area(),v.area()); double d = p.distance(v.p); double hf = (r+v.r+d)/2.0; double ss = 2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d)); double a1 = acos((r*r+d*d-v.r*v.r)/(2.0*r*d)); a1 = a1*r*r; double a2 = acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d)); a2 = a2*v.r*v.r; return a1+a2-ss; } //求圆和三角形 pab 的相交面积 //测试:POJ3675 HDU3982 HDU2892 double areatriangle(Point a,Point b){ if(sgn((p-a)^(p-b)) == 0)return 0.0; Point q[5]; int len = 0; q[len++] = a; Line l(a,b); Point p1,p2; if(pointcrossline(l,q[1],q[2])==2){ if(sgn((a-q[1])*(b-q[1]))<0)q[len++] = q[1]; if(sgn((a-q[2])*(b-q[2]))<0)q[len++] = q[2]; } q[len++] = b; if(len == 4 && sgn((q[0]-q[1])*(q[2]-q[1]))>0)swap(q[1],q [2]); double res = 0; for(int i = 0;i < len-1;i++){ if(relation(q[i])==0||relation(q[i+1])==0){ double arg = p.rad(q[i],q[i+1]); res += r*r*arg/2.0; } else{ res += fabs((q[i]-p)^(q[i+1]-p))/2.0; } } return res; } }; struct polygon{ int n; Point p[maxp]; Line l[maxp]; void input(int _n){ n = _n; for(int i = 0;i < n;i++) p[i].input(); } void add(Point q){ p[n++] = q; } void getline(){ for(int i = 0;i < n;i++){ l[i] = Line(p[i],p[(i+1)%n]); } } struct cmp{ Point p; cmp(const Point &p0){p = p0;} bool operator()(const Point &aa,const Point &bb){ Point a = aa, b = bb; int d = sgn((a-p)^(b-p)); if(d == 0){ return sgn(a.distance(p)-b.distance(p)) < 0; } return d > 0; } }; //进行极角排序 //首先需要找到最左下角的点 //需要重载号好 Point 的 < 操作符 (min 函数要用) void norm(){ Point mi = p[0]; for(int i = 1;i < n;i++)mi = min(mi,p[i]); sort(p,p+n,cmp(mi)); } //得到凸包 //得到的凸包里面的点编号是 0~n-1 的 //两种凸包的方法 //注意如果有影响,要特判下所有点共点,或者共线的特殊情况 //测试 LightOJ1203 LightOJ1239 void getconvex(polygon &convex){ sort(p,p+n); convex.n = n; for(int i = 0;i < min(n,2);i++){ convex.p[i] = p[i]; } if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n --;//特判 if(n <= 2)return; int &top = convex.n; top = 1; for(int i = 2;i < n;i++){ while(top && sgn((convex.p[top]-p[i])^(convex.p[top-1]- p[i])) <= 0) top--; convex.p[++top] = p[i]; } int temp = top; convex.p[++top] = p[n-2]; for(int i = n-3;i >= 0;i--){ while(top != temp && sgn((convex.p[top]-p[i])^(convex.p [top-1]-p[i])) <= 0) top--; convex.p[++top] = p[i]; } if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n --;//特判 convex.norm();//原来得到的是顺时针的点,排序后逆时针 } //得到凸包的另外一种方法 //测试 LightOJ1203 LightOJ1239 void Graham(polygon &convex){ norm(); int &top = convex.n; top = 0; if(n == 1){ top = 1; convex.p[0] = p[0]; return; } if(n == 2){ top = 2; convex.p[0] = p[0]; convex.p[1] = p[1]; if(convex.p[0] == convex.p[1])top--; return; } convex.p[0] = p[0]; convex.p[1] = p[1]; top = 2; for(int i = 2;i < n;i++){ while( top > 1 && sgn((convex.p[top-1]-convex.p[top-2]) ^(p[i]-convex.p[top-2])) <= 0 ) top--; convex.p[top++] = p[i]; } if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n --;//特 判 } //判断是不是凸的 bool isconvex(){ bool s[2]; memset(s,false,sizeof(s)); for(int i = 0;i < n;i++){ int j = (i+1)%n; int k = (j+1)%n; s[sgn((p[j]-p[i])^(p[k]-p[i]))+1] = true; if(s[0] && s[2])return false; } return true; } //判断点和任意多边形的关系 // 3 点上 // 2 边上 // 1 内部 // 0 外部 int relationpoint(Point q){ for(int i = 0;i < n;i++){ if(p[i] == q)return 3; } getline(); for(int i = 0;i < n;i++){ if(l[i].pointonseg(q))return 2; } int cnt = 0; for(int i = 0;i < n;i++){ int j = (i+1)%n; int k = sgn((q-p[j])^(p[i]-p[j])); int u = sgn(p[i].y-q.y); int v = sgn(p[j].y-q.y); if(k > 0 && u < 0 && v >= 0)cnt++; if(k < 0 && v < 0 && u >= 0)cnt--; } return cnt != 0; } //直线 u 切割凸多边形左侧 //注意直线方向 //测试:HDU3982 void convexcut(Line u,polygon &po){ int &top = po.n;//注意引用 top = 0; for(int i = 0;i < n;i++){ int d1 = sgn((u.e-u.s)^(p[i]-u.s)); int d2 = sgn((u.e-u.s)^(p[(i+1)%n]-u.s)); if(d1 >= 0)po.p[top++] = p[i]; if(d1*d2 < 0)po.p[top++] = u.crosspoint(Line(p[i],p[(i +1)%n])); } } //得到周长 //测试 LightOJ1239 double getcircumference(){ double sum = 0; for(int i = 0;i < n;i++){ sum += p[i].distance(p[(i+1)%n]); } return sum; } //得到面积 double getarea(){ double sum = 0; for(int i = 0;i < n;i++){ sum += (p[i]^p[(i+1)%n]); } return fabs(sum)/2; } //得到方向 // 1 表示逆时针,0 表示顺时针 bool getdir(){ double sum = 0; for(int i = 0;i < n;i++) sum += (p[i]^p[(i+1)%n]); if(sgn(sum) > 0)return 1; return 0; } //得到重心 Point getbarycentre(){ Point ret(0,0); double area = 0; for(int i = 1;i < n-1;i++){ double tmp = (p[i]-p[0])^(p[i+1]-p[0]); if(sgn(tmp) == 0)continue; area += tmp; ret.x += (p[0].x+p[i].x+p[i+1].x)/3*tmp; ret.y += (p[0].y+p[i].y+p[i+1].y)/3*tmp; } if(sgn(area)) ret = ret/area; return ret; } //多边形和圆交的面积 //测试:POJ3675 HDU3982 HDU2892 double areacircle(circle c){ double ans = 0; for(int i = 0;i < n;i++){ int j = (i+1)%n; if(sgn( (p[j]-c.p)^(p[i]-c.p) ) >= 0) ans += c.areatriangle(p[i],p[j]); else ans-= c.areatriangle(p[i],p[j]); } return fabs(ans); } //多边形和圆关系 // 2 圆完全在多边形内 // 1 圆在多边形里面,碰到了多边形边界 // 0 其它 int relationcircle(circle c){ getline(); int x = 2; if(relationpoint(c.p) != 1)return 0;//圆心不在内部 for(int i = 0;i < n;i++){ if(c.relationseg(l[i])==2)return 0; if(c.relationseg(l[i])==1)x = 1; } return x; } }; //AB X AC double cross(Point A,Point B,Point C){ return (B-A)^(C-A); } //AB*AC double dot(Point A,Point B,Point C){ return (B-A)*(C-A); } //最小矩形面积覆盖 // A 必须是凸包 (而且是逆时针顺序) // 测试 UVA 10173 double minRectangleCover(polygon A){ //要特判 A.n < 3 的情况 if(A.n < 3)return 0.0; A.p[A.n] = A.p[0]; double ans =-1; int r = 1, p = 1, q; for(int i = 0;i < A.n;i++){ //卡出离边 A.p[i] - A.p[i+1] 最远的点 while( sgn( cross(A.p[i],A.p[i+1],A.p[r+1])-cross(A.p[i], A.p[i+1],A.p[r]) ) >= 0 ) r = (r+1)%A.n; //卡出 A.p[i] - A.p[i+1] 方向上正向 n 最远的点 while(sgn( dot(A.p[i],A.p[i+1],A.p[p+1])-dot(A.p[i],A.p[i +1],A.p[p]) ) >= 0 ) p = (p+1)%A.n; if(i == 0)q = p; //卡出 A.p[i] - A.p[i+1] 方向上负向最远的点 while(sgn(dot(A.p[i],A.p[i+1],A.p[q+1])-dot(A.p[i],A.p[i +1],A.p[q])) <= 0) q = (q+1)%A.n; double d = (A.p[i]-A.p[i+1]).len2(); double tmp = cross(A.p[i],A.p[i+1],A.p[r]) * (dot(A.p[i],A.p[i+1],A.p[p])-dot(A.p[i],A.p[i+1],A.p[ q]))/d; if(ans < 0 || ans > tmp)ans = tmp; } return ans; } //直线切凸多边形 //多边形是逆时针的,在 q1q2 的左侧 //测试:HDU3982 vector<Point> convexCut(const vector<Point> &ps,Point q1,Point q2){ vector<Point>qs; int n = ps.size(); for(int i = 0;i < n;i++){ Point p1 = ps[i], p2 = ps[(i+1)%n]; int d1 = sgn((q2-q1)^(p1-q1)), d2 = sgn((q2-q1)^(p2-q1)); if(d1 >= 0) qs.push_back(p1); if(d1 * d2 < 0) qs.push_back(Line(p1,p2).crosspoint(Line(q1,q2))); } return qs; } //半平面交 //测试 POJ3335 POJ1474 POJ1279 //*************************** struct halfplane:public Line{ double angle; halfplane(){} //表示向量 s->e 逆时针 (左侧) 的半平面 halfplane(Point _s,Point _e){ s = _s; e = _e; } halfplane(Line v){ s = v.s; e = v.e; } void calcangle(){ angle = atan2(e.y-s.y,e.x-s.x); } bool operator <(const halfplane &b)const{ return angle < b.angle; } }; struct halfplanes{ int n; halfplane hp[maxp]; Point p[maxp]; int que[maxp]; int st,ed; void push(halfplane tmp){ hp[n++] = tmp; } //去重 void unique(){ int m = 1; for(int i = 1;i < n;i++){ if(sgn(hp[i].angle-hp[i-1].angle) != 0) hp[m++] = hp[i]; else if(sgn( (hp[m-1].e-hp[m-1].s)^(hp[i].s-hp[m-1].s) ) > 0) hp[m-1] = hp[i]; } n = m; } bool halfplaneinsert(){ for(int i = 0;i < n;i++)hp[i].calcangle(); sort(hp,hp+n); unique(); que[st=0] = 0; que[ed=1] = 1; p[1] = hp[0].crosspoint(hp[1]); for(int i = 2;i < n;i++){ while(st<ed && sgn((hp[i].e-hp[i].s)^(p[ed]-hp[i].s)) <0)ed--; while(st<ed && sgn((hp[i].e-hp[i].s)^(p[st+1]-hp[i].s)) <0)st++; que[++ed] = i; if(hp[i].parallel(hp[que[ed-1]]))return false; p[ed]=hp[i].crosspoint(hp[que[ed-1]]); } while(st<ed && sgn((hp[que[st]].e-hp[que[st]].s)^(p[ed]-hp[ que[st]].s))<0)ed--; while(st<ed && sgn((hp[que[ed]].e-hp[que[ed]].s)^(p[st+1]- hp[que[ed]].s))<0)st++; if(st+1>=ed)return false; return true; } //得到最后半平面交得到的凸多边形 //需要先调用 halfplaneinsert() 且返回 true void getconvex(polygon &con){ p[st] = hp[que[st]].crosspoint(hp[que[ed]]); con.n = ed-st+1; for(int j = st,i = 0;j <= ed;i++,j++) con.p[i] = p[j]; } }; //*************************** const int maxn = 1010; struct circles{ circle c[maxn]; double ans[maxn];//ans[i] 表示被覆盖了 i 次的面积 double pre[maxn]; int n; circles(){} void add(circle cc){ c[n++] = cc; } //x 包含在 y 中 bool inner(circle x,circle y){ if(x.relationcircle(y) != 1)return 0; return sgn(x.r-y.r)<=0?1:0; } //圆的面积并去掉内含的圆 void init_or(){ bool mark[maxn] = {0}; int i,j,k=0; for(i = 0;i < n;i++){ for(j = 0;j < n;j++) if(i != j && !mark[j]){ if( (c[i]==c[j])||inner(c[i],c[j]) )break; } if(j < n)mark[i] = 1; } for(i = 0;i < n;i++) if(!mark[i]) c[k++] = c[i]; n = k; } //圆的面积交去掉内含的圆 void init_add(){ int i,j,k; bool mark[maxn] = {0}; for(i = 0;i < n;i++){ for(j = 0;j < n;j++) if(i != j && !mark[j]){ if( (c[i]==c[j])||inner(c[j],c[i]) )break; } if(j < n)mark[i] = 1; } for(i = 0;i < n;i++) if(!mark[i]) c[k++] = c[i]; n = k; } //半径为 r 的圆,弧度为 th 对应的弓形的面积 double areaarc(double th,double r){ return 0.5*r*r*(th-sin(th)); } //测试 SPOJVCIRCLES SPOJCIRUT //SPOJVCIRCLES 求 n 个圆并的面积,需要加上 init_or() 去掉重复圆(否则WA) //SPOJCIRUT 是求被覆盖 k 次的面积,不能加 init_or() //对于求覆盖多少次面积的问题,不能解决相同圆,而且不能 init_or() //求多圆面积并,需要 init_or, 其中一个目的就是去掉相同圆 void getarea(){ memset(ans,0,sizeof(ans)); vector<pair<double,int> >v; for(int i = 0;i < n;i++){ v.clear(); v.push_back(make_pair(-pi,1)); v.push_back(make_pair(pi,-1)); for(int j = 0;j < n;j++) if(i != j){ Point q = (c[j].p-c[i].p); double ab = q.len(),ac = c[i].r, bc = c[j].r; if(sgn(ab+ac-bc)<=0){ v.push_back(make_pair(-pi,1)); v.push_back(make_pair(pi,-1)); continue; } if(sgn(ab+bc-ac)<=0)continue; if(sgn(ab-ac-bc)>0)continue; double th = atan2(q.y,q.x), fai = acos((ac*ac+ ab*ab-bc*bc)/(2.0*ac*ab)); double a0 = th-fai; if(sgn(a0+pi)<0)a0+=2*pi; double a1 = th+fai; if(sgn(a1-pi)>0)a1-=2*pi; if(sgn(a0-a1)>0){ v.push_back(make_pair(a0,1)); v.push_back(make_pair(pi,-1)); v.push_back(make_pair(-pi,1)); v.push_back(make_pair(a1,-1)); } else{ v.push_back(make_pair(a0,1)); v.push_back(make_pair(a1,-1)); } } sort(v.begin(),v.end()); int cur = 0; for(int j = 0;j < v.size();j++){ if(cur && sgn(v[j].first-pre[cur])){ ans[cur] += areaarc(v[j].first-pre[cur],c[i].r) ; ans[cur] += 0.5*(Point(c[i].p.x+c[i].r*cos(pre[ cur]),c[i].p.y+c[i].r*sin(pre[cur]))^Point(c [i].p.x+c[i].r*cos(v[j].first),c[i].p.y+c[i ].r*sin(v[j].first))); } cur += v[j].second; pre[cur] = v[j].first; } } for(int i = 1;i < n;i++) ans[i]-= ans[i+1]; } }; //.3平面最近点对 const int MAXN = 100010; const double INF = 1e20; struct Point{ double x,y; void input(){ scanf("%lf%lf",&x,&y); } }; double dist(Point a,Point b){ return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)); } Point p[MAXN]; Point tmpt[MAXN]; bool cmpx(Point a,Point b){ return a.x < b.x || (a.x == b.x && a.y < b.y); } bool cmpy(Point a,Point b){ return a.y < b.y || (a.y == b.y && a.x < b.x); } double Closest_Pair(int left,int right){ double d = INF; if(left == right)return d; if(left+1 == right)return dist(p[left],p[right]); int mid = (left+right)/2; double d1 = Closest_Pair(left,mid); double d2 = Closest_Pair(mid+1,right); d = min(d1,d2); int cnt = 0; for(int i = left;i <= right;i++){ if(fabs(p[mid].x-p[i].x) <= d) tmpt[cnt++] = p[i]; } sort(tmpt,tmpt+cnt,cmpy); for(int i = 0;i < cnt;i++){ for(int j = i+1;j < cnt && tmpt[j].y-tmpt[i].y < d;j++) d = min(d,dist(tmpt[i],tmpt[j])); } return d; } int main(){ int n; while(scanf("%d",&n) == 1 && n){ for(int i = 0;i < n;i++)p[i].input(); sort(p,p+n,cmpx); printf("%.2lf\n",Closest_Pair(0,n-1)); } return 0; }