Kaggle自然语言处理入门 推特灾难文本分类 Natural Language Processing with Disaster Tweets

和新闻按照标题分类差不多,用的朴素贝叶斯

#导入必要的包
import random
import sys

from sklearn import model_selection
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
import joblib
import re,string
import pandas as pd
import numpy as np
def text_to_words(file_path):#将文本拆分成 词语 和 标签
    myTrain = pd.read_csv(file_path)
    sentences_arr = []
    lab_arr = list(myTrain.values[:, 4])
    for i in range(len(myTrain.values)):
        sentence = myTrain.values[i, 3].split('	')[-1].strip()  # 得到句子
        sentence = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()《》:]+", " ", sentence)  # sub是代替,这里是把标点符号换成空格
        sentence = sentence.split(' ')
        sentences_arr.append(sentence)

    return sentences_arr, lab_arr
def load_stopwords(file_path):#创建停用词表
    stopwords = [line.strip() for line in open(file_path, encoding='UTF-8').readlines()]#line.strip()用于去除两端空格
    return stopwords
def get_dict(sentences_arr,stopswords):#生成词典
    word_dic = {}
    for sentence in sentences_arr:
        for word in sentence:
            if word != ' ' and word.isalpha():#isalpha函数用于判断字符串是否全部由字母组成
                if word not in stopswords:
                    word_dic[word] = word_dic.get(word,1) + 1
    word_dic=sorted(word_dic.items(),key=lambda x:x[1],reverse=True) #按词频序排列

    return word_dic

def get_feature_words(word_dic,word_num):#选取出现次数最多的前 word_num 个单词作为特征词
    n = 0
    feature_words = []
    for word in word_dic:
        if n < word_num:
            feature_words.append(word[0])
        n += 1
    return feature_words

# 文本特征
def get_text_features(train_data_list, test_data_list, feature_words):#根据特征词,将 训练集 和 测试集 中的句子转化为特征向量
    def text_features(text, feature_words):
        text_words = set(text)
        features = [1 if word in text_words else 0 for word in feature_words] # 形成特征向量
        return features
    train_feature_list = [text_features(text, feature_words) for text in train_data_list]
    test_feature_list = [text_features(text, feature_words) for text in test_data_list]
    return train_feature_list, test_feature_list


sentences_arr, lab_arr = text_to_words('../train.csv')#获取分词后的数据及标签
print(sentences_arr[0])

stopwords = load_stopwords('../stopwords.txt')#加载停用词
word_dic = get_dict(sentences_arr,stopwords)#生成词典
train_data_list, test_data_list, train_class_list, test_class_list = model_selection.train_test_split(sentences_arr,lab_arr,test_size=0.1)#数据集划分
feature_words =  get_feature_words(word_dic,1000)#生成特征词列表



train_feature_list,test_feature_list = get_text_features(train_data_list,test_data_list,feature_words)#生成特征向量
from sklearn.metrics import accuracy_score,classification_report

#贝叶斯分类器有五种,这里用伯努利贝叶斯是因为每个特征都是二值变量
classifier = BernoulliNB(alpha=1.0,  # 拉普拉斯平滑
                          fit_prior=True,  #否要考虑先验概率
                          class_prior=None)

print(type(train_feature_list))
print(type(train_class_list))
classifier.fit(train_feature_list, train_class_list)#进行训练

predict = classifier.predict(test_feature_list)# 在验证集上进行验证
test_accuracy = accuracy_score(predict,test_class_list)
print("准确率 accuracy_score: %.4lf"%(test_accuracy))
print("模型评估报告 Classification report for classifier:\n",classification_report(test_class_list, predict))
joblib.dump(classifier, "NewsClassification.model")

myModel = joblib.load("NewsClassification.model")

def load_sentence(sentence):
    sentence = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()《》:]+", " ",sentence)  # sub是代替,这里是把标点符号换成空格
    sentence = sentence.split(' ')
    return sentence




p_data = 'We had a big earthquake here and many houses collapsed'
sentence = load_sentence(p_data)
sentence= [sentence]
print('分词结果:', sentence)
p_words = get_text_features(sentence,sentence,feature_words)#形成特征向量
res = myModel.predict(p_words[0])
print("所属类型:",int(res))


cnt=0
id=[]
target=[]
myTest = pd.read_csv('../test.csv')
for i in range(len(myTest.values)):
    sentence = myTest.values[i, 3].split('	')[-1].strip()  # 得到句子
    sentence = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()《》:]+", " ", sentence)  # sub是代替,这里是把标点符号换成空格
    sentence = sentence.split(' ')
    sentence = [sentence]
    print('分词结果:', sentence)
    p_words = get_text_features(sentence, sentence, feature_words)  # 形成特征向量
    res = myModel.predict(p_words[0])
    print("所属类型:", int(res))
    id.append(myTest.values[i, 0])
    target.append(int(res))
    cnt=cnt+1
    if cnt%1000 ==0:
        print(cnt)
myAns = pd.DataFrame({'id': id, 'target': target})
myAns.to_csv("myAns.csv", index=False, sep=',')


posted @ 2024-04-11 18:58  wljss  阅读(53)  评论(0编辑  收藏  举报