k近邻(KNN)
import csv import random import math import operator def loadDataset(filename, split, trainingSet = [], testSet = []): with open(filename, 'rb') as csvfile:#逗号分隔符的文件类型 lines = csv.reader(csvfile) dataset = list(lines) for x in range(len(dataset)-1): for y in range(4): dataset[x][y] = float(dataset[x][y]) if random.random() < split: trainingSet.append(dataset[x]) else: testSet.append(dataset[x]) def euclideanDistance(instance1, instance2, length): distance = 0 for x in range(length): distance += pow((instance1[x]-instance2[x]), 2) return math.sqrt(distance) def getNeighbors(trainingSet, testInstance, k): distances = [] length = len(testInstance)-1 for x in range(len(trainingSet)): #testinstance dist = euclideanDistance(testInstance, trainingSet[x], length) distances.append((trainingSet[x], dist)) #distances.append(dist) distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(k): neighbors.append(distances[x][0]) return neighbors def getResponse(neighbors):#根据距离近远个数投票属于哪个类别 classVotes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in classVotes: classVotes[response] += 1 else: classVotes[response] = 1 sortedVotes = sorted(classVotes.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedVotes[0][0] def getAccuracy(testSet, predictions): correct = 0 for x in range(len(testSet)): if testSet[x][-1] == predictions[x]: correct += 1 return (correct/float(len(testSet)))*100.0 def main(): #prepare data trainingSet = [] testSet = [] split = 0.67 loadDataset(r'irisdata.txt', split, trainingSet, testSet) print 'Train set: ' + repr(len(trainingSet)) print 'Test set: ' + repr(len(testSet)) #generate predictions predictions = [] k = 3 for x in range(len(testSet)): # trainingsettrainingSet[x] neighbors = getNeighbors(trainingSet, testSet[x], k)#得到最近的邻居 result = getResponse(neighbors)#返回分类投票结果 predictions.append(result) print ('>predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1])) print ('predictions: ' + repr(predictions)) accuracy = getAccuracy(testSet, predictions) print('Accuracy: ' + repr(accuracy) + '%') if __name__ == '__main__': main()